Publications by authors named "Mathew C Casimiro"

The essential G-cyclin, CCND1, is frequently overexpressed in cancer, contributing to tumorigenesis by driving cell-cycle progression. D-type cyclins are rate-limiting regulators of G-S progression in mammalian cells via their ability to bind and activate CDK4 and CDK6. In addition, cyclin D1 conveys kinase-independent transcriptional functions of cyclin D1.

View Article and Find Full Text PDF
Article Synopsis
  • * DACH1 gene deletion, found in up to 18% of PCa cases, correlates with higher activity of the androgen receptor (AR) and poor patient outcomes, as seen in studies involving prostate OncoMice.
  • * The loss of DACH1 expression results in increased DNA damage and resistance to certain cancer therapies (like PARP inhibitors), suggesting that this alteration may indicate a specific subclass of PCa that could benefit from targeted treatment strategies.
View Article and Find Full Text PDF

Prostate cancer (PCa), the second leading cause of death in American men, includes distinct genetic subtypes with distinct therapeutic vulnerabilities. The gene encodes a winged helix/Forkhead DNA-binding protein that competes for binding to FOXM1 sites. Herein, gene deletion within the 13q21.

View Article and Find Full Text PDF
Article Synopsis
  • * Genetic deletion of PPARγ (a receptor involved in various cancers) can slow down mammary tumor progression and enhance immune cell infiltration without disturbing other blood stem cell pools.
  • * PPARγ1 fosters growth and inflammation in ErbB2-induced tumors by activating key signaling pathways, suggesting that targeting this pathway may help in developing new treatment strategies for these aggressive cancers.
View Article and Find Full Text PDF

The essential G-cyclin, CCND1, is a collaborative nuclear oncogene that is frequently overexpressed in cancer. D-type cyclins bind and activate CDK4 and CDK6 thereby contributing to G-S cell-cycle progression. In addition to the nucleus, herein cyclin D1 was also located in the cytoplasmic membrane.

View Article and Find Full Text PDF

Cyclin D1 encodes the regulatory subunit of a holoenzyme that phosphorylates RB and functions as a collaborative nuclear oncogene. The serine threonine kinase Akt plays a pivotal role in the control of cellular metabolism, survival, and mitogenic signaling. Herein, Akt1-mediated phosphorylation of downstream substrates in the mammary gland is reduced by cyclin D1 genetic deletion and is induced by mammary-gland-targeted cyclin D1 overexpression.

View Article and Find Full Text PDF

Lysine methylation of histones and non-histone substrates by the SET domain containing protein lysine methyltransferase (KMT) G9a/EHMT2 governs transcription contributing to apoptosis, aberrant cell growth, and pluripotency. The positioning of chromosomes within the nuclear three-dimensional space involves interactions between nuclear lamina (NL) and the lamina-associated domains (LAD). Contact of individual LADs with the NL are dependent upon H3K9me2 introduced by G9a.

View Article and Find Full Text PDF

Genetic classification of breast cancer based on the coding mRNA suggests the evolution of distinct subtypes. Whether the non-coding genome is altered concordantly with the coding genome and the mechanism by which the cell cycle directly controls the non-coding genome is poorly understood. Herein, the miRNA signature maintained by endogenous cyclin D1 in human breast cancer cells was defined.

View Article and Find Full Text PDF

Cell cycle control proteins govern events that leads to the production of two identical daughter cells. Distinct sequential temporal phases, Gap 1 (G), Gap 0 (G), Synthesis (S), Gap 2 (G) and Mitosis (M) are negotiated through a series of check points during which the favorability of the local cellular environment is assessed, prior to replicating DNA [1]. Cyclin D1 has been characterized as a key regulatory subunit of the holoenzyme that promotes the G/S-phase transition through phosphorylating the pRB protein.

View Article and Find Full Text PDF

The gene encodes the regulatory subunit of a holoenzyme that drives cell autonomous cell cycle progression and proliferation. Herein we show cyclin D1 abundance is increased >30-fold in the stromal fibroblasts of patients with invasive breast cancer, associated with poor outcome. Cyclin D1 transformed hTERT human fibroblast to a cancer-associated fibroblast phenotype.

View Article and Find Full Text PDF

Autophagy activated after DNA damage or other stresses mitigates cellular damage by removing damaged proteins, lipids, and organelles. Activation of the master metabolic kinase AMPK enhances autophagy. Here we report that cyclin D1 restrains autophagy by modulating the activation of AMPK.

View Article and Find Full Text PDF

Cyclin dependent kinases are proline-directed serine/threonine protein kinases that are traditionally activated upon association with a regulatory subunit. For most CDKs, activation by a cyclin occurs through association and phosphorylation of the CDK's T-loop. CDK5 is unusual because it is not typically activated upon binding with a cyclin and does not require T-loop phosphorylation for activation, even though it has high amino acid sequence homology with other CDKs.

View Article and Find Full Text PDF

Proteomic analysis of castration-resistant prostate cancer demonstrated the enrichment of Src tyrosine kinase activity in approximately 90% of patients. Src is known to induce cyclin D1, and a cyclin D1-regulated gene expression module predicts poor outcome in human prostate cancer. The tumor-associated calcium signal transducer 2 (TACSTD2/Trop2/M1S1) is enriched in the prostate, promoting prostate stem cell self-renewal upon proteolytic activation via a γ-secretase cleavage complex (PS1, PS2) and TACE (ADAM17), which releases the Trop2 intracellular domain (Trop2 ICD).

View Article and Find Full Text PDF

Time-lapse video microscopy can be defined as the real time imaging of living cells. This technique relies on the collection of images at different time points. Time intervals can be set through a computer interface that controls the microscope-integrated camera.

View Article and Find Full Text PDF

Patients with hormone-resistant prostate cancer (PCa) have higher biochemical failure rates following radiation therapy (RT). Cyclin D1 deregulated expression in PCa is associated with a more aggressive disease: however its role in radioresistance has not been determined. Cyclin D1 levels in the androgen-independent PC3 and 22Rv1 PCa cells were stably inhibited by infecting with cyclin D1-shRNA.

View Article and Find Full Text PDF

Therapy resistance and poor outcome in prostate cancer is associated with increased expression of cyclin D1. Androgens promote DNA double-strand break repair to reduce DNA damage, and cyclin D1 was also shown to enhance DNA damage repair (DDR). In this study, we investigated the significance of cyclin D1 in androgen-induced DDR using established prostate cancer cells and prostate tissues from cyclin D1 knockout mice.

View Article and Find Full Text PDF

Cyclin D1 is an important molecular driver of human breast cancer but better understanding of its oncogenic mechanisms is needed, especially to enhance efforts in targeted therapeutics. Currently, pharmaceutical initiatives to inhibit cyclin D1 are focused on the catalytic component since the transforming capacity is thought to reside in the cyclin D1/CDK activity. We initiated the following study to directly test the oncogenic potential of catalytically inactive cyclin D1 in an in vivo mouse model that is relevant to breast cancer.

View Article and Find Full Text PDF

Prostate cancer is the second leading form of cancer-related death in men. In a subset of prostate cancer patients, increased chemokine signaling IL8 and IL6 correlates with castrate-resistant prostate cancer (CRPC). IL8 and IL6 are produced by prostate epithelial cells and promote prostate cancer cell invasion; however, the mechanisms restraining prostate epithelial cell cytokine secretion are poorly understood.

View Article and Find Full Text PDF

Hypogonadatropic hypogonadism (HH) can be acquired through energy restriction or may be inherited as congenital hypogonadotropic hypogonadism and its anosmia-associated form, Kallmann's syndrome. Congenital hypogonadotropic hypogonadism is associated with mutations in a group of genes that impact fibroblast growth factor 8 (FGF8) function. The Sirt1 gene encodes a nicotinamide adenine dinucleotide-dependent histone deacetylase that links intracellular metabolic stress to gene expression.

View Article and Find Full Text PDF

Prostatic intraepithelial neoplasia is a precursor to prostate cancer. Herein, deletion of the NAD(+)-dependent histone deacetylase Sirt1 induced histological features of prostatic intraepithelial neoplasia at 7 months of age; these features were associated with increased cell proliferation and enhanced mitophagy. In human prostate cancer, lower Sirt1 expression in the luminal epithelium was associated with poor prognosis.

View Article and Find Full Text PDF

In our prior publications we characterized a conserved acetylation motif (K(R)xxKK) of evolutionarily related nuclear receptors. Recent reports showed that peroxisome proliferator activated receptor gamma (PPARγ) deacetylation by SIRT1 is involved in delaying cellular senescence and maintaining the brown remodeling of white adipose tissue. However, it still remains unknown whether lysyl residues 154 and 155 (K154/155) of the conserved acetylation motif (RIHKK) in Pparγ1 are acetylated.

View Article and Find Full Text PDF

The cyclin D1 gene encodes the regulatory subunit of a holoenyzme that phosphorylates the retinoblastoma protein (pRb) and nuclear respiratory factor (NRF1) proteins. The abundance of cyclin D1 determines estrogen-dependent gene expression in the mammary gland of mice. Using estradiol (E2) and an E2-dendrimer conjugate that is excluded from the nucleus, we demonstrate that E2 delays the DNA damage response (DDR) via an extranuclear mechanism.

View Article and Find Full Text PDF