Publications by authors named "Mathew B Wong"

α-Synuclein inclusion bodies are a pathological hallmark of several neurodegenerative diseases, including Parkinson's disease, and contain aggregated α-synuclein and a variety of recruited factors, including protein chaperones, proteasome components, ubiquitin and the small ubiquitin-like modifier, SUMO-1. Cell culture and animal model studies suggest that misfolded, aggregated α-synuclein is actively translocated via the cytoskeletal system to a region of the cell where other factors that help to lessen the toxic effects can also be recruited. SUMO-1 covalently conjugates to various intracellular target proteins in a way analogous to ubiquitination to alter cellular distribution, function and metabolism and also plays an important role in a growing list of cellular pathways, including exosome secretion and apoptosis.

View Article and Find Full Text PDF

Multiple system atrophy (MSA) exhibits widespread astrogliosis together with α-synuclein (α-syn) glial cytoplasmic inclusions (GCIs) in mature oligodendrocytes. We quantified astrocyte activation by morphometric analysis of MSA cases, and investigated the correlation to GCI proximity. Using Imaris software, we obtained "skinned" three-dimensional models of GFAP-positive astrocytes in MSA and control tissue (n=75) from confocal z-stacks and measured the astrocyte process length and thickness and radial distance to the GCI.

View Article and Find Full Text PDF

α-Synuclein is the key aggregating protein in Parkinson's disease (PD), which is characterized by cytoplasmic protein inclusion bodies, termed Lewy bodies, thought to increase longevity of the host neuron by sequestering toxic soluble α-synuclein oligomers. Previous post-mortem studies have shown relative sparing of neurons in PD that are positive for the Ca(2+) buffering protein, calbindin, and recent cell culture and in vitro studies have shown that α-synuclein aggregation can be induced by Ca(2+). We hypothesized that depolarization with potassium resulting in raised Ca(2+) in a PD cell culture model will lead to the formation of α-synuclein protein aggregates and that the intracellular Ca(2+) buffer, BAPTA-AM, may suppress their formation.

View Article and Find Full Text PDF

Oligodendroglial inclusion bodies characterize a subset of neurodegenerative diseases. Multiple system atrophy (MSA) is characterized by α-synuclein glial cytoplasmic inclusions and progressive supranuclear palsy (PSP) is associated with glial tau inclusions. The ubiquitin homologue, SUMO-1, has been identified in inclusion bodies in MSA, located in discrete sub-domains in α-synuclein-positive inclusions.

View Article and Find Full Text PDF