Publications by authors named "Matheus de Freitas Souza"

Chemical desiccation in the preharvest of grains and seeds is commonly used in production fields. Using herbicides for this purpose is a viable alternative to reduce beans' exposure to adverse crop conditions. Our objectives were to evaluate (1) the efficacy of herbicides for accelerated defoliation of cowpea, (2) the impact of herbicide application on antioxidant enzyme activity and protein and amino acid contents in seeds, and (3) the effects of different herbicide application schedules on the physiological aspects of seeds.

View Article and Find Full Text PDF

Atrazine is an herbicide with a high soil leaching capacity, contaminating subsurface water sources. Once the water table is contaminated, riparian species can be exposed to atrazine. In this way, understanding the impacts of this exposure must be evaluated for planning strategies that minimize the effects of this herbicide on native forest species.

View Article and Find Full Text PDF

Mobile herbicides have a high potential for groundwater contamination. An alternative to decrease the mobility of herbicides is to apply materials with high sorbent capacity to the soil, such as biochars. The objective of this research was to evaluate the effect of eucalyptus, rice hull, and native bamboo biochar amendments on sorption and desorption of hexazinone, metribuzin, and quinclorac in a tropical soil.

View Article and Find Full Text PDF

The leaching of herbicides into the soil is essential to control germinating seeds and parts of vegetative weeds. However, herbicide transportation to deeper soil layers can result in groundwater contamination and, consequently, environmental issues. In this research, our objective was to investigate differences in herbicide leaching between commercial formulations and analytical standards using three different soils.

View Article and Find Full Text PDF

Herbicides have already reported environmental contamination in several countries with intense agricultural activity. The transport of these molecules due to leaching and surface runoff has frequently caused contamination of rivers, groundwater and soil in non-agricultural areas. Thereby, we propose to investigate the sensitivity and phytoremediation capacity of 5 native Cerrado species to sequential exposure to 2,4-D, atrazine, diuron and hexazinone.

View Article and Find Full Text PDF

The large variation in the response of sunflower to nitrogen fertilization indicates the need for studies to better adjust the optimum levels of this nutrient for production conditions. Our objectives were to analyze the agronomic yield of sunflower cultivars as a function of nitrogen fertilization; indicate the cultivar with high nitrogen use efficiency; and measure the adequate N dose for sunflower through nutritional efficiency. The completely randomized block design with split plots was used to conduct the experiments.

View Article and Find Full Text PDF

Herbicide mixtures have often been used to control weeds in crops worldwide, but the behavior of these mixtures in the environment is still poorly understood. Laboratory and greenhouse tests have been conducted to study the interaction of the herbicides diuron, hexazinone, and sulfometuron-methyl which have been applied alone and in binary and ternary mixtures in the processes of sorption, desorption, half-life, and leaching in the soil. A new index of the risk of leaching of these herbicides has also been proposed.

View Article and Find Full Text PDF
Article Synopsis
  • Weed control is crucial for crop yield, and while traditional empirical models help, they lack the flexibility needed for different situations.
  • Supervised machine learning, particularly artificial neural networks (ANNs), has shown superior performance in estimating yield losses in onions due to weeds, outperforming multiple linear regression (MLR) methods.
  • The best-performing ANNs have proven effective in pinpointing when to start weed control, paving the way for future research using computer vision technologies to enhance weed management strategies.
View Article and Find Full Text PDF

The speed of the sorption reaction alters the bioavailability of herbicides in the soil and, consequently, the transport and transformation processes of the molecule in the environment. In this research, the sorption kinetics of sulfometuron-methyl was evaluated in different Brazilian soils in which sugarcane is grown. The sorption speed was carried out by the batch equilibrium method.

View Article and Find Full Text PDF

Glyphosate is applied for dissection in no-till and post-emergence management in transgenic crops in agricultural fields near the Cerrado and Caatinga biomes. These biomes together represent 33.8% of the Brazilian territory, contributing to the maintenance of great world diversity in flora and fauna.

View Article and Find Full Text PDF

Pyrolysis conditions directly influence biochar properties and, consequently, influence the potential use of biochar. In this study, we evaluated the effects of different pyrolysis temperatures (450, 550, 650, 750, 850, and 950 °C) on the hydrogen potential, electrical conductivity, ash content, yield, volatile matter content, elemental analysis, Fourier-transform infrared spectroscopy results, X-ray diffraction results, scanning electron microscopy results, specific surface area, and micropore volume of eucalyptus wood-derived biochar. The degree of linear association between pyrolysis temperatures and biochar properties was examined using the Pearson correlation coefficient.

View Article and Find Full Text PDF

The selection of weed biotypes that are resistant to glyphosate has increased the demand for its use mixed with other herbicides, such as sulfentrazone. However, when chemical molecules are mixed, interactions may occur, modifying the behavior of these molecules in the environment, such as the sorption and desorption in soil. In this study, we hypothesized that the presence of glyphosate-formulated products might increase the sorption or decrease the desorption of sulfentrazone, thereby increasing the risk of the contamination of water resources.

View Article and Find Full Text PDF

Metagenomics has provided the discovery of genes and metabolic pathways involved in the degradation of xenobiotics. Some microorganisms can metabolize these compounds, potentiating phytoremediation in association with plant. This study aimed to study the metagenome and the occurrence of atrazine degradation genes in rhizospheric soils of the phytoremediation species Inga striata and Caesalphinea ferrea.

View Article and Find Full Text PDF

In Brazil, the atrazine has been applied frequently to join with glyphosate to control resistant biotypes and weed tolerant species to glyphosate. However, there are no studies about atrazine's behavior in soil when applied in admixture with glyphosate. Knowledge of atrazine's sorption and desorption mixed with glyphosate is necessary because the lower sorption and higher desorption may increase the leaching and runoff of pesticides, reaching groundwaters and rivers.

View Article and Find Full Text PDF

The herbicides diuron, hexazinone, and sulfometuron-methyl present a potential risk of environmental contamination and are widely used for weed control in sugarcane cultivation. Our objectives were to measure the tolerance of Canavalia ensiformes (L.) DC.

View Article and Find Full Text PDF

Bidens subalternans DC. is a weed found in several tropical countries such as Brazil. Large number of produced seeds and easy dispersion favor the colonization of agricultural fields by this species.

View Article and Find Full Text PDF

Weed control efficiency and the environmental contamination potential of herbicides depend on soil sorption and desorption. Among the indexes that evaluate the soil adsorption processes, the coefficients sorption (Kf) and desorption (Kf) obtained by Freundlich isotherms can provide accurate information about the behavior of an herbicide in the soil. The values of Kf and Kf of an herbicide vary according to the physicochemical characteristics of the soil, so it is possible to estimate these coefficients with high precision if good predictive mathematical models are constructed.

View Article and Find Full Text PDF

The use of herbicides in Brazil has been carried out based on the manufacturer's recommendation, often disregarding the high variability of soil attributes. The use of statistical methods to predict the herbicide retention processes in the soil can contribute to the improvement of weed control efficiency associated with the lower risk of environmental contamination. This research evaluated the use of Artificial Neural Networks (ANNs) to predict soil sorption and desorption, as well as the environmental contamination potential of diuron, hexazinone and sulfometuron-methyl herbicides in Brazilian soils.

View Article and Find Full Text PDF

Sorption and desorption determine the amount of an herbicide in soil solution. Therefore, knowledge of the sorption and desorption coefficients in different soils is an essential factor to estimate the potential for environmental contamination by herbicides. We evaluated the feasibility of multivariate and linear discriminant analyses to predict the sorption and desorption capacity of a soil for diuron, one of the most used herbicides on sugarcane plantations.

View Article and Find Full Text PDF

Herbicide wastes from agriculture areas can contaminate water resources and affect non-target organisms. Since herbicides reach groundwater and rivers, these residues can damage the aquatic ecosystem. Hexazinone is an herbicide widely used in sugarcane cultivation and has a potential to contaminate water resources.

View Article and Find Full Text PDF