Publications by authors named "Matheus S de Sa"

The antiplasmodial active extract of Xanthium cavanillesii contains 3,4-dicaffeoyl quinic acid (3,4-DCQA), 3,5-dicaffeoyl quinic acid (3,5-DCQA) and 1,3,5-tricaffeoyl quinic acid (1,3,5-TCQA). These results inspired us to investigate the interaction of these molecules with a promising validated target of Plasmodium, PfATP6 orthologue of mammalian Ca-ATPase. Models of this receptor were obtained through comparative modelling.

View Article and Find Full Text PDF

This study reports on the design, synthesis and antiparasitic activity of three new semi-synthetic naphthoquinones structurally related to the naturally-occurring lapachol and lapachone. Of the compounds tested, 3-(3-methylbut-1-en-1-yl)-1,4-dioxo-1,4-dihydronaphthalen-2-yl acetate (1) was the most active against Plasmodium falciparum among both natural and semi-synthetic naphthoquinones, showing potent and selective activity. Compound 1 was able to reduce the in vitro parasite burden, in vitro parasite cell cycle, as well as the blood parasitemia in Plasmodium berghei-infected mice.

View Article and Find Full Text PDF

A useful concept for the rational design of antiparasitic drug candidates is the complexation of bioactive ligands with transition metals. In view of this, an investigation was conducted into a new set of metal complexes as potential antiplasmodium and antiamoebic agents, in order to examine the importance of metallic atoms, as well as the kind of sphere of co-ordination, in these biological properties. Four functionalized furyl-thiosemicarbazones (NT1-4) treated with divalent metals (Cu, Co, Pt, and Pd) to form the mononuclear metallic complexes of formula [M(L)2Cl2] or [M(L)Cl2] were examined.

View Article and Find Full Text PDF

Malaria is one of the most important tropical diseases and mainly affects populations living in developing countries. Reduced sensitivity of Plasmodium sp. to formerly recommended antimalarial drugs places an increasing burden on malaria control programs as well as on national health systems in endemic countries.

View Article and Find Full Text PDF

Despite many advances made in disease mechanisms knowledge and drug discovery and development processes, the election of promising lead compounds continues to be a challenge. Efficient techniques are required for lead selection of hit compounds selected through in vitro pharmacological studies, in order to generate precise low cost throughput data with minimal amount of compound to support the right decision making. In this context, the selection of lead compounds with physicochemical parameters that will benefit orally bioavailable drugs are crucial for patients compliance and cost effectiveness, as well as for successful pharmacology.

View Article and Find Full Text PDF

Ryanodane diterpenes, named 14-O-methyl-ryanodanol and ryanodanol, were isolated from ripe fruit of Erythroxylum passerinum. Compound 2 was also found in the leaves of this species, while 1 was obtained from the leaves of E. nummularia.

View Article and Find Full Text PDF