Polymers (Basel)
August 2023
This article presents a comprehensive study on the physical, mechanical, thermal, and chemical properties of polypropylene (PP) composites reinforced with hemp fibers (HF) and compatibilized with maleic anhydride (MAPP). The composites were processed using a twin-screw extruder, followed by hot compression at 190 °C. Subsequently, the composites were analyzed using Izod impact and Shore D hardness tests to evaluate their mechanical properties.
View Article and Find Full Text PDFAs destructive power of firearms raises over the years, ballistic armors are in continuous need of enhancement. For soft armors, this improvement is invariably related to the increase of stacked layers of high-strength fiber fabrics, which potentially restrains wearer mobility. A different solution was created in the early 2000s, when a research work proposed a new treatment of the ballistic panels with non-Newtonian colloidal shear thickening fluid (STF), in view of weight decreasing with strength reinforcement and cost-effective production.
View Article and Find Full Text PDFPolymers (Basel)
September 2022
The growing concern about the limitation of non-renewable resources has brought a focus on the development of environmentally sustainable and biodegradable composite materials. In this context, a trend in the development of natural fibers used as a reinforcement in composites is ever-increasing. In this work, for the first-time, fibers extracted from the seven-islands-sedge plant () have been characterized by X-ray diffraction (XRD) to calculate the crystallinity index and the microfibrillar angle (MFA).
View Article and Find Full Text PDFBasic properties of sedge fibers from the seven-islands-sedge plant () were investigated with possible application in reinforcing composite materials. A dimensional distribution and the effect of fiber diameter on density were investigated using gas pycnometry. The Weibull method, used to statistically analyze the acquired data from the diameter intervals, indicated an inverse dependence, where the thinnest fibers had the highest density values.
View Article and Find Full Text PDFSeveral industry sectors have sought to develop materials that combine lightness, strength and cost-effectiveness. Natural lignocellulosic natural fibers have demonstrated to be efficient in replacing synthetic fibers, owing to several advantages such as costs 50% lower than that of synthetic fibers and promising mechanical specific properties. Polymeric matrix composites that use kenaf fibers as reinforcement have shown strength increases of over 600%.
View Article and Find Full Text PDFKenaf () is one of the most investigated and industrially applied natural fibers for polymer composite reinforcement. However, relatively limited information is available regarding its epoxy composites. In this work, both thermal and chemical properties were, for the first time, determined in kenaf fiber reinforced epoxy matrix composites.
View Article and Find Full Text PDFComposites reinforced with natural lignocellulosic fibers (NLFs) are gaining relevance as the worldwide demand for renewable and sustainable materials increases. To develop novel natural composites with satisfactory properties, less common NLFs should also be investigated. Among these, the (CM), a type of sedge fiber, is already used in simple items like ropes, furniture, and paper, but has not yet been investigated as composite reinforcement for possible engineering applications.
View Article and Find Full Text PDF