The retina is the sensory tissue responsible for the first stages of visual processing, with a conserved anatomy and functional architecture among vertebrates. To date, retinal eye diseases, such as diabetic retinopathy, age-related macular degeneration, retinitis pigmentosa, glaucoma, and others, affect nearly 170 million people worldwide, resulting in vision loss and blindness. To tackle retinal disorders, the developing retina has been explored as a versatile model to study intercellular signaling, as it presents a broad neurochemical repertoire that has been approached in the last decades in terms of signaling and diseases.
View Article and Find Full Text PDFNicotinic receptors are present in the retina of different vertebrates, and in the chick retina, it is present during early development throughout to post-hatching. These receptors are activated by nicotine, an alkaloid with addictive and neurotransmitter release modulation properties, such as GABA signaling. Here we evaluated the mechanisms of nicotine signaling in the avian retina during the development of neuron-glia cells at a stage where synapses are peaking.
View Article and Find Full Text PDFHere, we report on selective in vitro models of circuits based on glia (astrocytes, oligodendrocytes, and microglia) and/or neurons from peripheral (dorsal root ganglia) and central tissues (cortex, subventricular zone, organoid) that are dynamically studied in terms of calcium shifts. The model chosen to illustrate the results is the retina, a simple tissue with complex cellular interactions. Calcium is a universal messenger involved in most of the important cellular roles.
View Article and Find Full Text PDFStructural conversion of cellular prion protein (PrP) into scrapie PrP (PrP) and subsequent aggregation are key events associated with the onset of transmissible spongiform encephalopathies (TSEs). Experimental evidence supports the role of nucleic acids (NAs) in assisting this conversion. Here, we asked whether PrP undergoes liquid-liquid phase separation (LLPS) and if this process is modulated by NAs.
View Article and Find Full Text PDFTraceable truncated Neuropeptide Y (NPY) analogues with Y1 receptor (Y1R) affinity and selectivity are highly desirable tools in studying receptor location, regulation, and biological functions. A range of fluorescently labeled analogues of a reported Y1R/Y4R preferring ligand BVD-15 have been prepared and evaluated using high content imaging techniques. One peptide, [Lys(2)(sCy5), Arg(4)]BVD-15, was characterized as an Y1R antagonist with a pKD of 7.
View Article and Find Full Text PDF