Publications by authors named "Matheus B Soares"

Land use change, especially mining activities, contributes to anthropic CO emissions, leading to decreased carbon (C) storage and loss of biodiversity. Artisanal gold mining associated with the use of mercury (Hg) for amalgamation may change soil organic matter (SOM) contents, and the release of Hg into the environment generates serious environmental problems. Changes in soil biogeochemistry due to C loss and seasonal climate fluctuations affect Hg dynamics and can either increase or decrease its availability.

View Article and Find Full Text PDF

Despite the widespread use of biochar for soil and sediment remediation, little is known about the impact of pyrolysis temperature on the biogeochemistry of arsenic (As) and lead (Pb) and microorganisms in sediment under reducing conditions. In this study, we investigated the effects of pyrolysis temperature and the addition of glucose on the release and transformation of As and Pb, as well as their potential effects on the bacterial community in contaminated sediments. The addition of biochar altered the geochemical cycle of As, as it favors specific bacterial groups capable of changing species from As(V) to As(III) through fermentation, sulfate respiration and nitrate reduction.

View Article and Find Full Text PDF

Biochar is widely used for water and soil remediation in part because of its local availability and low production cost. However, its effectiveness depends on physicochemical properties related to its feedstock and pyrolysis temperature, as well as the environmental conditions of its use site. Furthermore, biochar is susceptible to natural aging caused by changes in soil or sediment moisture, which can alter its redox properties and interactions with contaminants such as arsenic (As).

View Article and Find Full Text PDF

Water contamination by arsenic (As) affects millions of people around the world, making techniques to immobilize or remove this contaminant a pressing societal need. Biochar and iron (oxyhydr)oxides [in particular, biogenic iron (oxyhydr)oxides (BIOS)] offer the possibility of stabilizing As in remediation systems. However, little is known about the potential antagonism in As sorption generated by the dissolved organic carbon (DOC) from biochar, or whether DOC affects how As(V) interacts with BIOS.

View Article and Find Full Text PDF

Mining is an important component of the Brazilian economy. However, it may also contribute to environmental problems such as the pollution of soils with zinc and other potentially toxic metals. Our objective was to evaluate changes in the chemical speciation and mobility of Zn in a soil amended with phosphate.

View Article and Find Full Text PDF

Nano zero-valent iron (nZVI) is one of the most studied nanomaterials for environmental remediation during the past 20 years. However, few studies have focused on nZVI combination with other materials (e.g.

View Article and Find Full Text PDF

Arsenic (As) and lead (Pb) are potentially toxic elements capable of developing several diseases in human beings such as cancer. Several adsorbent materials, including biochars, have been adopted as alternative measures designed to reduce the availability of As and Pb in water. The retention capacity of potentially toxic elements in biochars varies according to time, feedstock, and the pyrolysis temperature to produce the biochar.

View Article and Find Full Text PDF

Globally, tons of soils and sediments are experiencing degradation due to the presence of high concentrations of potentially toxic elements (PTEs), such as arsenic (As) and lead (Pb), in areas in the vicinity of metal mining activities. The addition of biochar to contaminated sediments is a promising in situ remediation approach, and the effects of pyrolysis temperature and biochar aging are important factors for the immobilization and fate of PTEs. In this study, we evaluated the temporal changes in pools of As and Pb in sediment amended with biochars produced from sugarcane (Saccharum officinarum) pyrolyzed at 350 (BC350), 550 (BC550), and 750 °C (BC750).

View Article and Find Full Text PDF

This study aimed to characterize the effect of amending soils with biochars derived from soybean residues, sugarcane bagasse, and wood chips on the sorption-desorption of indaziflam and indaziflam-triazinediamine (FDAT), indaziflam-triazine-indanone (ITI), and indaziflam-carboxylic acid (ICA) metabolites applied to soils from three Midwestern U.S. states, a silt loam and a silty clay loam.

View Article and Find Full Text PDF

The management of initial planting density can be a strategy to increase barium phytoextraction from soil, reducing the time required for soil decontamination. To delimit the ideal planting density for barium (Ba) phytoremediation using Typha domingensis, we conducted a 300-day experiment in an area accidentally contaminated with barite. Four initial planting densities were tested: 4, 8, 12, and 16 plantsm (D4, D8, D12, and D16 treatments, respectively).

View Article and Find Full Text PDF

Sewage sludge (SS) is widely used in agriculture in several countries around the world. However, the impact of successive applications of SS on soil and the risks of nutrient leaching are often neglected. In this study, corn was grown on a constructed wetland for four crop cycles (two years), in which the wetland was subjected to successive SS applications.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_session7k061rfc8a6bqf73qf3o6vooju4o385q): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once