Computational human body models (HBMs) can identify potential injury pathways not easily accessible through experimental studies, such as whiplash induced injuries. However, previous computational studies investigating neck response to simulated impact conditions have neglected the effect of pre-impact neck posture and muscle pre-tension on the intervertebral kinematics and tissue-level response. The purpose of the present study was addressing this knowledge gap using a detailed neck model subjected to simulated low-acceleration rear impact conditions, towards improved intervertebral kinematics and soft tissue response for injury assessment.
View Article and Find Full Text PDFActive neck musculature plays an important role in the response of the head and neck during impact and can affect the risk of injury. Finite element Human Body Models (HBM) have been proposed with open and closed-loop controllers for activation of muscle forces; however, controllers are often calibrated to specific experimental loading cases, without considering the intrinsic role of physiologic muscle reflex mechanisms under different loading conditions. This study aimed to develop a single closed-loop controller for neck muscle activation in a contemporary male HBM based on known reflex mechanisms and assess how this approach compared to current open-loop controllers across a range of impact directions and severities.
View Article and Find Full Text PDFNeck muscle activation is increasingly important for accurate prediction of occupant response in automotive impact scenarios and occupant excursion resulting from active safety systems such as autonomous emergency braking. Muscle activation and optimization in frontal impact scenarios using computational Human Body Models have not been investigated over the broad range of accelerations relevant to these events. This study optimized the muscle activation of a contemporary finite element model of the human head and neck for human volunteer experiments over a range of frontal impact severities (2 g to 15 g).
View Article and Find Full Text PDF