Publications by authors named "Matheshwaran Saravanan"

Arsenic (As) poisoning in aquifers is a serious problem worldwide, especially in the middle-Gangetic Plain (MGP) of India. Microbially-mediated As speciation in such aquifers is governed by the arsenate-reductase enzyme, ArsC, encoded by the arsC gene of As-metabolizing bacteria. In this study, ArsC1 (119 aa) and ArsC2 (141 aa) of a highly resistant strain to arsenic, Citrobacter youngae IITK SM2 (CyIITKSM2), isolated from a mixed-oxic MGP groundwater were biochemically characterized.

View Article and Find Full Text PDF

In the present study, we have developed an agar-based asymmetric Janus nanofibrous wound dressing comprising a support and an electrospun layer with antibacterial and antioxidant properties, respectively, to facilitate healing effectively. The support layer containing agar and silver nitrate was fabricated by using solvent casting for sustained release, combating the dose-dependent cytotoxicity of silver nanoparticles, where nanoparticles were synthesized using a one-pot reduction method. The electrospun layer, fabricated with a mixture of agar and polycaprolactone infused with gallic acid, was electrospun over the support layer to impart antioxidant properties.

View Article and Find Full Text PDF

Various environmental signals, such as temperature, pH, nutrient levels, salt content and the presence of other microorganisms, can influence biofilm's development and dynamics. However, the innate mechanisms that govern at the molecular and cellular levels remain elusive. Here, we report the impact of physiologically relevant concentrations of NaCl on biofilm formation and the associated differences in an undomesticated natural isolate of .

View Article and Find Full Text PDF

Dense bacterial suspensions display collective motion exhibiting coherent flow structures reminiscent of turbulent flows. However, in contrast to inertial turbulence, the microscopic dynamics underlying bacterial turbulence is only beginning to be understood. Here, we report experiments revealing correlations between microscopic dynamics and the emergence of collective motion in bacterial suspensions.

View Article and Find Full Text PDF
Article Synopsis
  • Antimicrobial resistance (AMR) poses a global threat, and the bacterial SOS response, regulated by LexA and RecA, allows bacteria to gain mutations that contribute to AMR.
  • Targeting LexA, which is absent in human cells, with a new inhibitor could suppress the SOS response and thereby lessen the chances of AMR by preventing adaptive mutations.
  • Research involving various scientific methods demonstrated that an inhibitor could effectively bind to LexA in Mycobacterium tuberculosis, blocking its function and reducing mutation rates linked to AMR.
View Article and Find Full Text PDF

Bio-spinterfaces present numerous opportunities to study spintronics across the biomolecules attached to (ferro)magnetic electrodes. While it offers various exciting phenomena to investigate, it is simultaneously challenging to make stable bio-spinterfaces as biomolecules are sensitive to many factors that it encounters during thin-film growth to device fabrication. The chirality-induced spin-selectivity effect is an exciting discovery, demonstrating an understanding that a specific electron's spin (either up or down) passes through a chiral molecule.

View Article and Find Full Text PDF

Three platinum(II)-N-heterocyclic carbene (NHC) compounds [Pt(L)Cl](PF) (1), [Pt(L)(COD)](PF) (2) and [Pt(L)Cl] (3) were synthesized bearing pyridyl-functionalized butenyl-tethered (LH) and -butyl tethered (LH) NHC ligands, and their antibacterial activity against clinically relevant human pathogens was evaluated. Complex 1 was designed to have one of its metal coordination sites masked with a hemilabile butenyl group. The antibacterial activity spectrum against the ESKAPE panel of pathogens shows superior activity of 1 compared to 2 and 3 against the Gram-positive pathogen.

View Article and Find Full Text PDF

Zinc is a cofactor for enzymes involved in DNA replication, peptidoglycan hydrolysis, and pH maintenance, in addition to the transfer of the methyl group to thiols. Here, we discovered a new role of Zn as an inhibitor for -adenosyl methionine (SAM) binding in a mycobacterial methyltransferase. Rv1377c is annotated as a putative methyltransferase that is upregulated upon the mitomycin C treatment of .

View Article and Find Full Text PDF

Antimicrobial resistance (AMR) is a global health concern. Targetting AMR, we present an lactonization mechanism generating 4-nitroisobenzofuran-1(3)-one (IITK2020), an exclusive inhibitor at 2-4 μg mL MIC including multidrug-resistant clinical strains, that prevents peptidoglycan biosynthesis.

View Article and Find Full Text PDF

Whole-genome sequencing (WGS) data of a bacterial strain IITK SM2 isolated from an aquifer located in the middle Indo-Gangetic plain is reported here, along with its physiological, morphological, biochemical, and redox-transformation characteristics in the presence of dissolved arsenic (As). The aquifer exhibits oxidizing conditions relative to As speciation. Analyses based on and sequences indicate that IITK SM2 was clustered with NCTC 13708 and NCTC UMH17.

View Article and Find Full Text PDF
Article Synopsis
  • LexA is a transcriptional repressor that plays a crucial role in regulating the bacterial 'SOS' response for DNA damage repair, with unique structural features in Mycobacterium tuberculosis compared to Escherichia coli.
  • Mtb LexA has additional amino acids in its DNA-binding domain and hinge region, which may influence its function, but their exact roles are not fully understood.
  • Kinetic analyses using Bio-layer Interferometry revealed that Mtb LexA binds to 'SOS' boxes with high affinity, and specific deletions in its structure impact this DNA binding, providing insights into the mechanisms behind 'SOS' regulation in Mtb.
View Article and Find Full Text PDF

Transcriptional repressor, LexA, regulates the "SOS" response, an indispensable bacterial DNA damage repair machinery.  Compared to its E.coli ortholog, LexA from Mycobacterium tuberculosis (Mtb) possesses a unique N-terminal extension of additional 24 amino acids in its DNA binding domain (DBD) and 18 amino acids insertion at its hinge region that connects the DBD to the C-terminal dimerization/autoproteolysis domain.

View Article and Find Full Text PDF

Long term multiple systemic antibiotics form the cornerstone in the treatment of bone and joint tuberculosis, often combined with local surgical eradication. Implanted carriers for local drug delivery have recently been introduced to overcome some of the limitations associated with conventional treatment strategies. In this study, we used a calcium sulphate hemihydrate (CSH)/nanohydroxyapatite (nHAP) based nanocement (NC) biomaterial as a void filler as well as a local delivery carrier of two standard of care tuberculosis drugs, Rifampicin (RFP) and Isoniazid (INH).

View Article and Find Full Text PDF

During autophagy, double-membrane vesicles called autophagosomes capture and degrade the intracellular cargo. The de novo formation of autophagosomes requires several vesicle transport and membrane fusion events which are not completely understood. We studied the involvement of exocyst, an octameric tethering complex, which has a primary function in tethering post-Golgi secretory vesicles to plasma membrane, in autophagy.

View Article and Find Full Text PDF

Quantitative evaluation of small molecule permeation and accumulation in Gram-negative bacteria is important for drug development against these bacteria. While these measurements are commonly performed at physiological pH, Escherichia coli and many other Enterobacteriaceae infect human gastrointestinal and urinary tracts, where they encounter different pH conditions. To understand how external pH affects permeation and accumulation of small molecules in E.

View Article and Find Full Text PDF

We report here the complete genome sequence of Bacillus subtilis subsp. subtilis strain IITK SM1, isolated from kitchen waste compost. We have sequenced the whole genome of this strain to identify and characterize the enzymes that participate in efficient composting activity.

View Article and Find Full Text PDF

The frequency of rs2229611, previously reported in Chinese, Caucasians, Japanese and Hispanics, was investigated for the first time in Indian ethnicity. We analyzed its role in the progression of Glycogen Storage Disease type-Ia (GSD-Ia) and breast cancer. Genotype data on rs2229611 revealed that the risk of GSD-Ia was higher (P=0.

View Article and Find Full Text PDF

Anabaena PCC 7120 xisA gene product mediates the site-specific excision of 11,278 bp nifD element in heterocysts formed under nitrogen starvation conditions. Although XisA protein possesses both site-specific recombinase and endonuclease activities, till date neither xisA transcript nor XisA protein has been detected. Gene encoding XisA protein was isolated from plasmid pMX25 and overexpressed in Escherichia coli BL21 DE3 yielding 7.

View Article and Find Full Text PDF

Actin-related protein Arp8 is a component of the INO80 chromatin remodeling complex. Yeast Arp8 (yArp8) comprises two domains: a 25-KDa N-terminal domain, found only in yeast, and a 75-KDa C-terminal domain (yArp8CTD) that contains the actin fold and is conserved across other species. The crystal structure shows that yArp8CTD contains three insertions within the actin core.

View Article and Find Full Text PDF

A majority of enzymes show a high degree of specificity toward a particular metal ion in their catalytic reaction. However, Type II restriction endonuclease (REase) R.KpnI, which is the first member of the HNH superfamily of REases, exhibits extraordinary diversity in metal ion dependent DNA cleavage.

View Article and Find Full Text PDF

A typical feature of type II restriction endonucleases (REases) is their obligate sequence specificity and requirement for Mg(2+) during catalysis. R.KpnI is an exception.

View Article and Find Full Text PDF

Restriction endonucleases (REases) protect bacteria from invading foreign DNAs and are endowed with exquisite sequence specificity. REases have originated from the ancestral proteins and evolved new sequence specificities by genetic recombination, gene duplication, replication slippage, and transpositional events. They are also speculated to have evolved from nonspecific endonucleases, attaining a high degree of sequence specificity through point mutations.

View Article and Find Full Text PDF

Restriction endonuclease (REase) R.KpnI from Klebsiella pneumoniae is a homodimeric enzyme, which recognizes palindromic sequence GGTAC|C and cleaves generating 4 base 3' end overhangs. R.

View Article and Find Full Text PDF

We describe two uncommon roles for Zn2+ in enzyme KpnI restriction endonuclease (REase). Among all of the REases studied, KpnI REase is unique in its DNA binding and cleavage characteristics. The enzyme is a poor discriminator of DNA sequences, cleaving DNA in a promiscuous manner in the presence of Mg2+.

View Article and Find Full Text PDF