Publications by authors named "Mathangi Ganesan"

Dopamine provides crucial neuromodulatory functions in several insect and rodent learning and memory paradigms. However, an early study suggested that dopamine may be dispensable for aversive place memory in . Here we tested the involvement of particular dopaminergic neurons in place learning and memory.

View Article and Find Full Text PDF

The genetic basis of complex trait like learning and memory have been well studied over the decades. Through those groundbreaking findings, we now have a better understanding about some of the genes and pathways that are involved in learning and/or memory. However, few of these findings identified the naturally segregating variants that are influencing learning and/or memory within populations.

View Article and Find Full Text PDF

Painful events establish opponent memories: cues that precede pain are remembered negatively, whereas cues that follow pain, thus coinciding with relief are recalled positively. How do individual reinforcement-signaling neurons contribute to this "timing-dependent valence-reversal?" We addressed this question using an optogenetic approach in the fruit fly. Two types of fly dopaminergic neuron, each comprising just one paired cell, indeed established learned avoidance of odors that preceded their photostimulation during training, and learned approach to odors that followed the photostimulation.

View Article and Find Full Text PDF

Avoiding associatively learned predictors of danger is crucial for survival. Aversive memories can, however, become counter-adaptive when they are overly generalized to harmless cues and contexts. In a fruit fly odor-electric shock associative memory paradigm, we found that learned avoidance lost its specificity for the trained odor and became general to novel odors within a day of training.

View Article and Find Full Text PDF