Publications by authors named "Mateuszuk L"

Antiretroviral therapy have significantly improved the treatment of viral infections and reduced the associated mortality and morbidity rates. However, highly effective antiretroviral therapy (HAART) may lead to an increased risk of cardiovascular diseases, which could be related to endothelial toxicity. Here, seven antiviral drugs (remdesivir, PF-00835231, ritonavir, lopinavir, efavirenz, zidovudine and abacavir) were characterized against aortic (HAEC) and pulmonary (hLMVEC) endothelial cells, using high-content microscopy.

View Article and Find Full Text PDF

Aim: Protein disulfide isomerases (PDIs) are involved in platelet aggregation and intravascular thrombosis, but their role in regulating endothelial function is unclear. Here, we characterized the involvement of vascular PDIA1 in angiotensin II (Ang II)-induced endothelial dysfunction in mice.

Methods: Endothelial dysfunction was induced in C57BL/6JCmd male mice via Ang II subcutaneous infusion, and PDIA1 was inhibited with bepristat.

View Article and Find Full Text PDF

This study aimed to investigate the putative role of nicotinamide N-methyltransferase in the metabolic response of human aortic endothelial cells. This enzyme catalyses S-adenosylmethionine-mediated methylation of nicotinamide to methylnicotinamide. This reaction is accompanied by the reduction of the intracellular nicotinamide and S-adenosylmethionine content.

View Article and Find Full Text PDF
Article Synopsis
  • Protein disulphide isomerases (PDIs) are crucial in cancer progression, but their specific roles in tumor formation are still unclear.
  • In a study of 22 cancer cell lines, PDIA1 and PDIA3 were found to be the most abundant isoforms, while PDIA17 showed varying expression levels across different cell lines.
  • Inhibition of PDIA1 and PDIA3 led to significant anti-proliferative effects in breast cancer cells, with the most notable effects seen in hormone-sensitive MCF-7 cells, suggesting potential strategies for targeted cancer therapies.
View Article and Find Full Text PDF

Cationic amphiphilic drugs (CADs) are known from lysosomotropism, drug-induced phospholipidosis (DIPL), activation of autophagy, and decreased cell viability, but the relationship between these events is not clear and little is known about DIPL in the endothelium. In this work, the effects of fluoxetine, amiodarone, clozapine, and risperidone on human microvascular endothelial cells (HMEC-1) were studied using a combined methodology of label-free Raman imaging and fluorescence staining. Raman spectroscopy was applied to characterize biochemical changes in lipid profile and their distribution in the cellular compartments, while fluorescence staining (LysoTracker, LipidTOX, LC3B, and JC-1) was used to analyze lysosome volume expansion, activation of autophagy, lipid accumulation, and mitochondrial membrane depolarization.

View Article and Find Full Text PDF
Article Synopsis
  • Nicotinamide N-methyltransferase (NNMT) converts nicotinamide into 1-methylnicotinamide using SAM, and its role in health and diseases like cancer, diabetes, and obesity is under investigation as a potential therapeutic target.
  • * Recent studies utilized mRNA display screening to identify macrocyclic peptides that effectively bind to NNMT, showing strong inhibitory effects with low IC values (as low as 229 nM).
  • * The identified cyclic peptides were found to downregulate MNA production in cells and are unique as they do not compete with existing substrates, suggesting they are the first allosteric inhibitors of NNMT.
View Article and Find Full Text PDF

A recently discovered bisubstrate inhibitor of Nicotinamide -methyltransferase (NNMT) was found to be highly potent in biochemical assays with a single digit nanomolar IC value but lacking in cellular activity. We, here, report a prodrug strategy designed to translate the observed potent biochemical inhibitory activity of this inhibitor into strong cellular activity. This prodrug strategy relies on the temporary protection of the amine and carboxylic acid moieties of the highly polar amino acid side chain present in the bisubstrate inhibitor.

View Article and Find Full Text PDF

Angiotensin II (Ang II) induces hypertension and endothelial dysfunction, but the involvement of thrombin in these responses is not clear. Here, we assessed the effects of the inhibition of thrombin activity by dabigatran on Ang II-induced hypertension and endothelial dysfunction in mice with a particular focus on NO- and 20-HETE-dependent pathways. As expected, dabigatran administration significantly delayed thrombin generation (CAT assay) in Ang II-treated hypertensive mice, and interestingly, it prevented endothelial dysfunction development, but it did not affect elevated blood pressure nor excessive aortic wall thickening.

View Article and Find Full Text PDF

Chloroquine (CQ) is an antimalarial drug known to inhibit autophagy flux by impairing autophagosome-lysosome fusion. We hypothesized that autophagy flux altered by CQ has a considerable influence on the lipid composition of endothelial cells. Thus, we investigated endothelial responses induced by CQ on human microvascular endothelial cells (HMEC-1).

View Article and Find Full Text PDF
Article Synopsis
  • - The study examined how early oxidative stress from menadione affects human aorta endothelial cells, focusing on cellular changes related to inflammation and reactive oxygen species (ROS) using Raman imaging and fluorescence staining.
  • - Results indicated that while short-term exposure to menadione did not trigger cell death, it did lead to endothelial inflammation and increased ROS levels within 3 hours.
  • - Chemometric analysis revealed significant decreases in certain biochemical markers (like cytochrome and nucleic acids) and increases in lipid markers, highlighting that oxidative stress-induced inflammation occurred before the noticeable rise in ROS levels or inflammation markers.
View Article and Find Full Text PDF

This work shows an impact of glutaraldehyde (GA) fixation on endothelial cells. Raman spectroscopy imaging was used as a method to monitor biochemical content of the cells due to GA fixation since this is an approach frequently used for studying cells by means of Raman imaging. To get a deeper insight into the changes and to understand them better the measurements of live and fixed cells were performed using two lasers, i.

View Article and Find Full Text PDF

Background: Nicotinamide mononucleotide (NMN) and nicotinamide riboside (NR) are effective substrates for NAD synthesis, which may act as vasoprotective agents. Here, we characterize the effects of NMN and NR on endothelial inflammation and dysfunction and test the involvement of CD73 in these effects.

Materials And Methods: The effect of NMN and NR on IL1β- or TNFα-induced endothelial inflammation (ICAM1 and vWF expression), intracellular NAD concentration and NAD-related enzyme expression (NAMPT, CD38, CD73), were studied in HAECs.

View Article and Find Full Text PDF
Article Synopsis
  • * When inflammation is induced by murine TNF-α (mTNF-α), there is only a low number of LDs formed, but using an inhibitor (atglistatin) increases their number significantly.
  • * On the other hand, stimulation with human TNF-α (hTNF-α) or FasL leads to both inflammation and apoptosis, resulting in more LDs that have varied biochemical compositions linked to the different stimuli, indicating a more complex function of LDs in these processes.
View Article and Find Full Text PDF

We investigated the suitability of immuno-SERS (iSERS) microscopy for imaging of smooth muscle cells (SMCs) in atherosclerotic plaques. Localization of SMCs is achieved by using SERS-labelled antibodies direct against alpha-smooth muscle actin (SMA). The staining quality of the false-colour iSERS images obtained by confocal Raman microscopy with point mapping is compared with wide-field immunofluorescence images.

View Article and Find Full Text PDF

Healthy liver sinusoidal endothelial cells (LSECs) maintain liver homeostasis, while LSEC dysfunction was suggested to coincide with defenestration. Here, we have revisited the relationship between LSEC pro-inflammatory response, defenestration, and impairment of LSEC bioenergetics in non-alcoholic fatty liver disease (NAFLD) in mice. We characterized inflammatory response, morphology as well as bioenergetics of LSECs in early and late phases of high fat diet (HFD)-induced NAFLD.

View Article and Find Full Text PDF

Endothelial dysfunction is recognized as a critical condition in the development of cardiovascular disorders. This multifactorial process involves changes in the biochemical and mechanical properties of endothelial cells leading to disturbed release of vasoprotective mediators. Hypercholesterolemia and increased stiffness of the endothelial cortex are independently shown to result in reduced release of nitric oxide and thus endothelial dysfunction.

View Article and Find Full Text PDF

Diabetes increases the risk of pulmonary hypertension and is associated with alterations in pulmonary vascular function. Still, it is not clear whether alterations in the phenotype of pulmonary endothelium induced by diabetes are distinct, as compared to peripheral endothelium. In the present work, we characterized differences between diabetic complications in the lung and aorta in db/db mice with advanced diabetes.

View Article and Find Full Text PDF

Background: Patients with cancer develop endothelial dysfunction and subsequently display a higher risk of cardiovascular events. The aim of the present work was to examine changes in nitric oxide (NO)- and prostacyclin (PGI)-dependent endothelial function in the systemic conduit artery (aorta), in relation to the formation of lung metastases and to local and systemic inflammation in a murine orthotopic model of metastatic breast cancer.

Methods: BALB/c female mice were orthotopically inoculated with 4T1 breast cancer cells.

View Article and Find Full Text PDF

Numerous in vitro experiments have confirmed that a dysfunctional endothelium is characterized by, inter alia, a higher affinity for binding of platelets and leukocytes. However, there is still no direct evidence for greater interaction between platelets and intact endothelium in in vivo animal models of diabetes. Therefore, the present study examines the pro-adhesive properties of endothelium change in vivo as an effect of streptozotocin (STZ)-induced diabetes and the role of two key platelet receptors: GPIb-IX-V and GPIIb/IIIa.

View Article and Find Full Text PDF

Angiotensin-converting enzyme inhibitors (ACE-I) display vasoprotective activity and represent the cornerstone in the treatment of cardiovascular diseases. In this study, we tested whether Fourier transform infrared (FTIR)-based analysis of blood plasma is sensitive to detect vasoprotective effects of treatment with perindopril including reversal of endothelial dysfunction in diabetes. For this purpose, plasma samples were collected from untreated db/db mice, db/db mice treated with 2 or 10 mg/kg perindopril and db+ mice.

View Article and Find Full Text PDF

Aims: Extracellular nucleotides and adenosine that are formed or degraded by membrane-bound ecto-enzymes could affect atherosclerosis by regulating the inflammation and thrombosis. This study aimed to evaluate a relation between ecto-enzymes that convert extracellular adenosine triphosphate to adenine dinucleotide phosphate, adenosine monophosphate, adenosine, and inosine on the surface of the vessel wall with the severity or progression of experimental and clinical atherosclerosis. Furthermore, we tested whether the inhibition of adenosine deaminase will block the development of experimental atherosclerosis.

View Article and Find Full Text PDF

Aims: Macropinocytosis has been implicated in cardiovascular and other disorders, yet physiological factors that initiate fluid-phase internalization and the signaling mechanisms involved remain poorly identified. The present study was designed to examine whether matrix protein thrombospondin-1 (TSP1) stimulates macrophage macropinocytosis and, if so, to investigate the potential signaling mechanism involved.

Results: TSP1 treatment of human and murine macrophages stimulated membrane ruffle formation and pericellular solute internalization by macropinocytosis.

View Article and Find Full Text PDF

Acute inhibition of NOS by L-NAME (N-nitro-L-arginine methyl ester) is known to decrease maximal oxygen consumption (V'O) and impair maximal exercise capacity, whereas the effects of chronic L-NAME treatment on V'O and exercise performance have not been studied so far. In this study, we analysed the effect of L-NAME treatment, (LN2 and LN12, respectively) on V'O and exercise capacity (in maximal incremental running and prolonged sub-maximal incremental running tests), systemic NO bioavailability (plasma nitrite (NO) and nitrate (NO)) and prostacyclin (PGI) production in C57BL6/J mice. Mice treated with L-NAME for 2 weeks (LN2) displayed higher V'O and better running capacity than age-matched control mice.

View Article and Find Full Text PDF

Background: Pulmonary arterial hypertension (PAH) is associated with inflammatory response but it is unknown whether it is associated with alterations in NNMT activity and MNA plasma concentration. Here we examined changes in NNMT-MNA pathway in PAH in rats and humans.

Methods: PAH in rats was induced by a single subcutaneous injection of MCT (60 mg/kg).

View Article and Find Full Text PDF