Focal gene amplifications are among the most common cancer-associated mutations but have proven challenging to engineer in primary cells and model organisms. Here we describe a general strategy to engineer large (more than 1 Mbp) focal amplifications mediated by extrachromosomal DNAs (ecDNAs) in a spatiotemporally controlled manner in cells and in mice. By coupling ecDNA formation with expression of selectable markers, we track the dynamics of ecDNA-containing cells under physiological conditions and in the presence of specific selective pressures.
View Article and Find Full Text PDFThe popularity of nonlinear analysis has been growing simultaneously with the technology of effort monitoring. Therefore, considering the simple methods of physiological data collection and the approaches from the information domain, we proposed integrating univariate and bivariate analysis for the rest and effort comparison. Two sessions separated by an intensive training program were studied.
View Article and Find Full Text PDFIn this paper, we studied the time-domain irreversibility of time series, which is a fundamental property of systems in a nonequilibrium state. We analyzed a subgroup of the databases provided by University of Rochester, namely from the THEW Project. Our data consists of LQTS (Long QT Syndrome) patients and healthy persons.
View Article and Find Full Text PDFUsing information theoretic measures, relations between heart rhythm, repolarization in the tissue of the heart, and the diastolic interval time series are analyzed. These processes are a fragment of the cardiovascular physiological network. A comparison is made between the results for 84 (42 women) healthy individuals and 65 (45 women) long QT syndrome type 1 (LQTS1) patients.
View Article and Find Full Text PDF