Publications by authors named "Mateusz Marianski"

Protonated ions of fucose-containing oligosaccharides are prone to undergo internal glycan rearrangement which results in chimeric fragments that obfuscate mass-spectrometric analysis. Lack of accessible tools that would facilitate systematic analysis of glycans in the gas phase limits our understanding of this phenomenon. In this work, we use density functional theory modeling to interpret cryogenic IR spectra of Lewis a and blood group type H1 trisaccharides and to establish whether these trisaccharides undergo the rearrangement during gas-phase analysis.

View Article and Find Full Text PDF

A combination of DFT calculations and experiments is used to describe how the selection of a promoter can control the stereochemical outcome of glycosylation reactions with the deoxy sugar saccharosamine. Depending on the promoter, either α- or β-linked reactive intermediates are formed. These studies show that differential modes of activation lead to the formation of distinct intermediates that undergo highly selective reactions through an S2-like mechanism.

View Article and Find Full Text PDF

The conformational study of saccharides and glycomimetics in solution is critical for a comprehensive understanding of their interactions with biological receptors and enabling the design of optimized glycomimetics. Here, we report a nuclear magnetic resonance (NMR) study centered on the conformational properties of the hydroxymethyl group and glycosidic bond of four series of aryl -glucosides. We found that in acetyl-protected and free aryl -β-glucosides, the rotational equilibrium around the C5-C6 bond (hydroxymethyl group) exhibits a linear dependence on the electronic properties of the aglycone, namely, as the aryl's substituent electron-withdrawing character increases, the dominance of the rotamer declines and the contribution rises.

View Article and Find Full Text PDF

Challenges in quantifying how force affects bond formation have hindered the widespread adoption of mechanochemistry. We used parallel tip-based methods to determine reaction rates, activation energies, and activation volumes of force-accelerated [4+2] Diels-Alder cycloadditions between surface-immobilized anthracene and four dienophiles that differ in electronic and steric demand. The rate dependences on pressure were unexpectedly strong, and substantial differences were observed between the dienophiles.

View Article and Find Full Text PDF

Fucose is a signaling carbohydrate that is attached at the end of glycan processing. It is involved in a range of processes, such as the selectin-dependent leukocyte adhesion or pathogen-receptor interactions. Mass-spectrometric techniques, which are commonly used to determine the structure of glycans, frequently show fucose-containing chimeric fragments that obfuscate the analysis.

View Article and Find Full Text PDF

Synthetic carbohydrate receptors (SCRs) that bind cell-surface carbohydrates could be used for disease detection, drug-delivery, and therapeutics, or for the site-selective modification of complex carbohydrates but their potential has not been realized because of remaining challenges associated with binding affinity and substrate selectivity. We have reported recently a series of flexible SCRs based upon a biaryl core with four pendant heterocyclic groups that bind glycans selectively through noncovalent interactions. Here we continue to explore the role of heterocycles on substrate selectivity by expanding our library to include a series of indole and quinoline heterocycles that vary in their regiochemistry of attachment to the biaryl core.

View Article and Find Full Text PDF

Can envelope glycans be targeted to stop viral pandemics? Here we address this question by using molecular dynamics simulations to study the binding between 10 synthetic carbohydrate receptors (SCRs) and the 33 N-glycans most commonly found on the surfaces of enveloped viruses, including Zika virus and SARS-CoV-2. Based on association quotients derived from these simulations, we classified the SCRs as weak binders, promiscuous binders, or selective binders. The SCRs almost exclusively associate at the ManGlcNAc core, which is common to all N-glycans, but the binding affinity between the SCR⋅glycan pair depends on the noncovalent interactions between the heterocycle rings and the glycan antennae.

View Article and Find Full Text PDF
Article Synopsis
  • * Current analytical techniques struggle to accurately identify these complex structures and distinguish between isomers, leading to potential misidentifications.
  • * This study utilizes cryogenic gas-phase infrared spectroscopy to effectively analyze different isomer types in glycolipids, providing clear spectroscopic signatures that help characterize these molecules for various biological uses.
View Article and Find Full Text PDF

Carbohydrate-receptor interactions are often involved in the docking of viruses to host cells, and this docking is a necessary step in the virus life cycle that precedes infection and, ultimately, replication. Despite the conserved structures of the glycans involved in docking, they are still considered "undruggable", meaning these glycans are beyond the scope of conventional pharmacological strategies. Recent advances in the development of synthetic carbohydrate receptors (SCRs), small molecules that bind carbohydrates, could bring carbohydrate-receptor interactions within the purview of druggable targets.

View Article and Find Full Text PDF

Synthetic carbohydrate receptors (SCRs) that selectively recognize cell-surface glycans could be used for detection, drug delivery, or as therapeutics. Here we report the synthesis of seven new C symmetric tetrapodal SCRs. The structures of these SCRs possess a conserved biaryl core, and they vary in the four heterocyclic binding groups that are linked to the biaryl core via secondary amines.

View Article and Find Full Text PDF

The stereoselective formation of 1,2-cis-glycosidic bonds is challenging. However, 1,2-cis-selectivity can be induced by remote participation of C4 or C6 ester groups. Reactions involving remote participation are believed to proceed via a key ionic intermediate, the glycosyl cation.

View Article and Find Full Text PDF

Fucose migration reactions represent a substantial challenge in the analysis of fucosylated glycan structures by mass spectrometry. In addition to the well-established observation of transposed fucose residues in glycan-dissociation product ions, recent experiments show that the rearrangement can also occur in intact glycan ions. These results suggest a low-energy barrier for migration of the fucose residue and broaden the relevance of fucose migration to include other types of mass spectrometry experiments, including ion mobility-mass spectrometry and ion spectroscopy.

View Article and Find Full Text PDF

Although there have been substantial improvements in glycan analysis over the past decade, the lack of both high-resolution and high-throughput methods hampers progress in glycomics. This perspective article highlights the current developments of liquid chromatography, mass spectrometry, ion-mobility spectrometry and cryogenic IR spectroscopy for glycan analysis and gives a critical insight to their individual strengths and limitations. Moreover, we discuss a novel concept in which ion mobility-mass spectrometry and cryogenic IR spectroscopy is combined in a single instrument such that datasets consisting of /, collision cross sections and IR fingerprints can be obtained.

View Article and Find Full Text PDF

Coordinative halogen bonds have recently gained interest for the assembly of supramolecular capsules. Ion mobility-mass spectrometry and theoretical calculations now reveal the well-defined gas-phase structures of dimeric and hexameric [N···I···N] halogen-bonded capsules with counterions located inside their cavities as guests. The solution reactivity of the large hexameric capsule shows the intriguing solvent-dependent equilibrium between the hexamer and an unprecedented pentameric [N···I···N] halogen-bonded capsule, when the solvent is changed from chloroform to dichloromethane.

View Article and Find Full Text PDF

The original version of this Article contained an error in Fig. 1, in which an oxygen atom was missing from the 'Acetoxonium type' structure. This has been corrected in both the PDF and HTML versions of the Article.

View Article and Find Full Text PDF

Glycosyl cations are the key intermediates during the glycosylation reaction that covalently links building blocks during the synthetic assembly of carbohydrates. The exact structure of these ions remained elusive due to their transient and short-lived nature. Structural insights into the intermediate would improve our understanding of the reaction mechanism of glycosidic bond formation.

View Article and Find Full Text PDF

Synthetic carbohydrate receptors could serve as agents for disease detection, drug delivery, or even therapeutics, however, they are rarely used for these applications because they bind weakly and with a preference towards the all-equatorial glucosides that are not prevalent on the cell surface. Herein the binding of 8 receptors with 5 distinct octyloxy pyranosides, which was measured by mass spectrometry and by H NMR titrations in CD Cl at 298 K, is reported, providing binding affinities that vary from ≈10 -10  m . Although the receptors are promiscuous, 1 shows selectivity for β-Man at a ratio of 103:1 β-Man:β-Gal, receptors 2-4 and 6 have preference for α-Man, 5 is selective for β-Gal, and 10 prefers α-Glc (Man=mannose; Gal=galactose, Glc=glucose).

View Article and Find Full Text PDF

The proton-bound dicarboxylate motif, RCOO ⋅H ⋅ OOCR, is a prevalent chemical configuration found in many condensed-phase systems. The proton-bound formate dimer HCOO ⋅H ⋅ OOCH was studied utilizing cold-ion IR action spectroscopy in the range 400-1800 cm . The spectrum obtained at ca.

View Article and Find Full Text PDF

Fucose is an essential deoxysugar that is found in a wide range of biologically relevant glycans and glycoconjugates. A recurring problem in mass spectrometric analyses of fucosylated glycans is the intramolecular migration of fucose units, which can lead to erroneous sequence assignments. This migration reaction is typically assigned to activation during collision-induced dissociation (CID) in tandem mass spectrometry (MS).

View Article and Find Full Text PDF

The amino acid serine has long been known to form a protonated "magic-number" cluster containing eight monomer units that shows an unusually high abundance in mass spectra and has a remarkable homochiral preference. Despite many experimental and theoretical studies, there is no consensus on a SerH structure that is in agreement with all experimental observations. Here, we present the structure of SerH determined by a combination of infrared spectroscopy and ab initio molecular dynamics simulations.

View Article and Find Full Text PDF

The diversity of stereochemical isomers present in glycans and glycoconjugates poses a formidable challenge for comprehensive structural analysis. Typically, sophisticated mass spectrometry (MS)-based techniques are used in combination with chromatography or ion-mobility separation. However, coexisting structurally similar isomers often render an unambiguous identification impossible.

View Article and Find Full Text PDF

A big hurdle when entering the field of carbohydrate research stems from the complications in the analytical and computational treatment. In effect, this extremely important class of biomolecules remains underinvestigated when compared, for example, with the maturity of genomics and proteomics research. On the theory side, the commonly used empirical methods suffer from an insufficient amount of high-quality experimental data against which they can be thoroughly validated.

View Article and Find Full Text PDF

Polyalanine based peptides that carry a lysine at the C-terminus ([Ac-AlanLys + H](+)) are known to form α-helices in the gas phase. Three factors contribute to the stability of these helices: (i) the interaction between the helix macro dipole and the charge, (ii) the capping of dangling C[double bond, length as m-dash]O groups by lysine and (iii) the cooperative hydrogen bond network. In previous studies, the influence of the interaction between the helix dipole and the charge as well as the impact of the capping was studied intensively.

View Article and Find Full Text PDF

Based on density-functional theory calculations, we discuss three forms of cellulose III that are characterized by different intersheet H-bonding patterns. Two alternative mechanisms can facilitate the interconversion between these H-bonding patterns: the rotation of hydroxy groups ("flip-flop") or a concerted proton transfer from one hydroxy group to the other ("proton hopping"). Both mechanisms have energy barriers of very similar height.

View Article and Find Full Text PDF

We compare dispersion and induction interactions for noble gas dimers and for Ne, methane, and 2-butyne with HF and LiF using a variety of functionals (including some specifically parameterized to evaluate dispersion interactions) with ab initio methods including CCSD(T) and MP2. We see that inductive interactions tend to enhance dispersion and may be accompanied by charge-transfer. We show that the functionals do not generally follow the expected trends in interaction energies, basis set superposition errors (BSSE), and interaction distances as a function of basis set size.

View Article and Find Full Text PDF