Metabolic processes in prokaryotic and eukaryotic organisms are often modulated by kinases which are in turn, dependent on Ca and the cyclic mononucleotides cAMP and cGMP. It has been established that some proteins have both kinase and cyclase activities and that active cyclases can be embedded within the kinase domains. Here, we identified phosphodiesterase (PDE) sites, enzymes that hydrolyse cAMP and cGMP, to AMP and GMP, respectively, in some of these proteins in addition to their kinase/cyclase twin-architecture.
View Article and Find Full Text PDFCyclic nucleotides 3',5'-cAMP and 3',5'-cGMP are now established signaling components of the plant cell while their 2',3' positional isomers are increasingly recognized as such. 3',5'-cAMP/cGMP is generated by adenylate cyclases (ACs) or guanylate cyclases (GCs) from ATP or GTP, respectively, whereas 2',3'-cAMP/cGMP is produced through the hydrolysis of double-stranded DNA or RNA by synthetases. Recent evidence suggests that the cyclic nucleotide generating and inactivating enzymes moonlight in proteins with diverse domain architecture operating as molecular tuners to enable dynamic and compartmentalized regulation of cellular signals.
View Article and Find Full Text PDFThe phytohormone auxin is the major coordinative signal in plant development, mediating transcriptional reprogramming by a well-established canonical signalling pathway. TRANSPORT INHIBITOR RESPONSE 1 (TIR1)/AUXIN-SIGNALING F-BOX (AFB) auxin receptors are F-box subunits of ubiquitin ligase complexes. In response to auxin, they associate with Aux/IAA transcriptional repressors and target them for degradation via ubiquitination.
View Article and Find Full Text PDFThe majority of proteins in both prokaryote and eukaryote proteomes consist of two or more functional centers, which allows for intramolecular tuning of protein functions. Such architecture, as opposed to animal orthologs, applies to the plant cyclases (CNC) and phosphodiesterases (PDEs), the vast majority of which are part of larger multifunctional proteins. In plants, until recently, only two cases of combinations of CNC-PDE in one protein were reported.
View Article and Find Full Text PDFIn plants, rapid and reversible biological responses to environmental cues may require complex cellular reprograming. This is enabled by signaling molecules such as the cyclic nucleotide monophosphates (cNMPs) cAMP and cGMP, as well as Ca. While the roles and synthesis of cAMP and cGMP in plants are increasingly well-characterized, the "off signal" afforded by cNMP-degrading enzymes, the phosphodiesterases (PDEs), is, however, poorly understood, particularly so in monocots.
View Article and Find Full Text PDFThe kidney is an organ that maintains the body's sodium and water balance and plays a significant role in blood pressure regulation. Chronic kidney disease (CKD) and a progressive loss of its function, among others, leads to sodium and water retention and, as a consequence, to arterial hypertension. The supply of salt and fluids delivered with the diet significantly affects the cardiovascular system's functioning particularly in hemodialysis patients.
View Article and Find Full Text PDFAdenylyl cyclases (ACs) and their catalytic product cAMP are regulatory components of many plant responses. Here, we show that an amino acid search motif based on annotated adenylate cyclases (ACs) identifies 12 unique candidate ACs, four of which have a role in the biosynthesis of the stress hormone abscisic acid (ABA). One of these, the 9-cis-epoxycarotenoid dioxygenase (NCED3 and At3g14440), was identified by sequence and structural analysis as a putative AC and then tested experimentally with two different methods.
View Article and Find Full Text PDFThe oxidative properties of nanomaterials arouse legitimate concerns about oxidative damage in biological systems. On the other hand, the undisputable benefits of nanomaterials promote them for biomedical applications; thus, the strategies to reduce oxidative potential are urgently needed. We aimed at analysis of nitrogen-containing carbon quantum dots (N-CQDs) in terms of their biocompatibility and internalization by different cells.
View Article and Find Full Text PDFA variety of plant cellular activities are regulated through mechanisms controlling the level of signal molecules, such as cyclic nucleotides (cNMPs, e.g., cyclic adenosine 3':5'-monophosphate, cAMP, and cyclic guanosine 3':5'- monophosphate, cGMP) and calcium ions (Ca2).
View Article and Find Full Text PDFCyclic nucleotide monophosphates (cNMPs) are increasingly recognized as essential signaling molecules governing many physiological and developmental processes in prokaryotes and eukaryotes. Degradation of cNMPs is as important as their generation because it offers the capability for transient and dynamic cellular level regulation but unlike their generating enzymes, the degrading enzymes, cyclic nucleotide phosphodiesterases (PDEs) are somewhat elusive in higher plants. Based on sequence analysis and structural properties of canonical PDE catalytic centers, we have developed a consensus sequence search motif and used it to identify candidate PDEs.
View Article and Find Full Text PDFProteins with a CyaB, thiamine triphosphatase domain (CYTH domain) may play a central role at the interface between nucleotide and polyphosphate metabolism. One of the plant CYTH domain-containing proteins from Brachypodium distachyon, BdTTM3, is annotated in NCBI databases as an 'adenylyl cyclase (AC)' or a 'triphosphate tunnel metalloenzyme'. The divergent nomenclature and the search for plant ACs induced us to experimentally confirm the enzymatic activity of BdTTM3.
View Article and Find Full Text PDF