Human leukocyte antigen (HLA) class I peptide ligands (HLAIps) are key targets for developing vaccines and immunotherapies against infectious pathogens or cancer cells. Identifying HLAIps is challenging due to their high diversity, low abundance, and patient individuality. Here, we develop a highly sensitive method for identifying HLAIps using liquid chromatography-ion mobility-tandem mass spectrometry (LC-IMS-MS/MS).
View Article and Find Full Text PDFThe analysis of the secretome provides important information on proteins defining intercellular communication and the recruitment and behavior of cells in specific tissues. Especially in the context of tumors, secretome data can support decisions for diagnosis and therapy. The mass spectrometry-based analysis of cell-conditioned media is widely used for the unbiased characterization of cancer secretomes in vitro.
View Article and Find Full Text PDFThe introduction of more sensitive mass spectrometers allows researchers to adapt front-end liquid chromatography (LC) to individual needs for the analysis of complex proteomes. Where absolute sensitivity is not paramount, it is advantageous to switch from a highly sensitive nanoflow-LC setup, the de facto standard platform in mass-spectrometry (MS)-based discovery proteomics, to a more robust, high-throughput-compatible microflow or conventional-flow setup. To enhance the microflow-LC-MS electrospray process of complex proteomic samples, we tested the effects of different solvents, including 2-propanol, methanol, and acetonitrile, pure or as mixture with dimethyl sulfoxide, which were added postcolumn to the eluting sample.
View Article and Find Full Text PDFElectron transfer dissociation (ETD) is a versatile technique used in mass spectrometry for the high-throughput characterization of proteins. It consists of several concurrent reactions triggered by the transfer of an electron from its anion source to sample cations. Transferring an electron causes peptide backbone cleavage while leaving labile post-translational modifications intact.
View Article and Find Full Text PDFJ Am Soc Mass Spectrom
January 2017
Owing to its versatility, electron transfer dissociation (ETD) has become one of the most commonly utilized fragmentation techniques in both native and non-native top-down mass spectrometry. However, several competing reactions-primarily different forms of charge reduction-occur under ETD conditions, as evidenced by the distorted isotope patterns usually observed. In this work, we analyze these isotope patterns to compare the stability of nondissociative electron transfer (ETnoD) products, specifically noncovalent c/z fragment complexes, across a range of ubiquitin conformational states.
View Article and Find Full Text PDF