Publications by authors named "Mateusz Ficek"

Self-formation of boron-doped diamond (BDD)-multilayer graphene (MLG) core-shell nanowalls (BDGNWs) via microwave plasma-enhanced chemical vapor deposition is systematically investigated. Here, the incorporation of nitrogen brings out the origin of MLG shells encapsulating the diamond core, resulting in unique sp/sp hybridized frameworks. The evolution mechanism of the nanowall-like morphology with the BDD-MLG core-shell composition is elucidated through a variety of spectroscopic studies.

View Article and Find Full Text PDF

Cells and tissues are constantly exposed to chemical and physical signals that regulate physiological and pathological processes. This study explores the integration of two biophysical methods: traction force microscopy (TFM) and optically detected magnetic resonance (ODMR) to concurrently assess cellular traction forces and the local relative temperature. We present a novel elastic substrate with embedded nitrogen-vacancy microdiamonds that facilitate ODMR-TFM measurements.

View Article and Find Full Text PDF

Pre-treatment of diamond surface in low-temperature plasma for oxygenation and in acids for carboxylation was hypothesized to promote the branching density of the hyperbranched glycidol polymer. This was expected to increase the homogeneity of the branching level and suppress interactions with proteins. As a result, composite nanodiamonds with reduced hydrodynamic diameters that are maintained in physiological environments were anticipated.

View Article and Find Full Text PDF

Tailoring the defects in graphene and its related carbon allotropes has great potential to exploit their enhanced electrochemical properties for energy applications, environmental remediation, and sensing. Vertical graphene, also known as carbon nanowalls (CNWs), exhibits a large surface area, enhanced charge transfer capability, and high defect density, making it suitable for a wide range of emerging applications. However, precise control and tuning of the defect size, position, and density remain challenging; moreover, due to their characteristic labyrinthine morphology, conventional characterization techniques and widely accepted quality indicators fail or need to be reformulated.

View Article and Find Full Text PDF

This paper focuses on the development of a novel electrode based on boron-doped diamond nanosheet full-volume-enriched screen-printed carbon electrodes (BDDPE) for use as an impedimetric biosensor. Impedimetric biosensors offer high sensitivity and selectivity for virus detection, but their use as point-of-care devices is limited by the complexity of nanomaterials' architecture and the receptor immobilisation procedures. The study presents a two-step modification process involving the electroreduction of diazonium salt at the BDDPE and the immobilisation of antibodies using zero-length cross-linkers for a selective impedimetric biosensor of Haemophilus influenzae (Hi).

View Article and Find Full Text PDF

Polycrystalline boron-doped diamond is a promising material for high-power aqueous electrochemical applications in bioanalytics, catalysis, and energy storage. The chemical vapor deposition (CVD) process of diamond formation and doping is totally diversified by using high kinetic energies of deuterium substituting habitually applied hydrogen. The high concentration of deuterium in plasma induces atomic arrangements and steric hindrance during synthesis reactions, which in consequence leads to a preferential (111) texture and more effective boron incorporation into the lattice, reaching a one order of magnitude higher density of charge carriers.

View Article and Find Full Text PDF

Magnetometry with nitrogen-vacancy (NV) color centers in diamond has gained significant interest among researchers in recent years. Absolute knowledge of the three-dimensional orientation of the magnetic field is necessary for many applications. Conventional magnetometry measurements are usually performed with NV ensembles in a bulk diamond with a thin NV layer or a scanning probe in the form of a diamond tip, which requires a smooth sample surface and proximity of the probing device, often limiting the sensing capabilities.

View Article and Find Full Text PDF

Diamond particles have great potential to enhance the mechanical, optical, and thermal properties of diamond-polymer composites. However, the improved properties of diamond-polymer composites depend on the size, dispersibility, and concentration of diamond particles. In the present study, diamond-polymer composites were prepared by adding the microdiamond particles (MDPs) with different concentrations (0.

View Article and Find Full Text PDF

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) enters the cells through the binding of spike protein to the host cell surface-expressing angiotensin-converting enzyme 2 (ACE2) or by endocytosis mediated by extracellular matrix metalloproteinase inducer (CD147). We present extended statistical studies of the multisine dynamic electrochemical impedance spectroscopy (DEIS) revealing interactions between Spike RBD and cellular receptors ACE2 and CD147, and a reference anti-RBD antibody (IgG2B) based on a functionalised boron-doped diamond (BDD) electrode. The DEIS was supported by a multivariate data analysis of a SARS-CoV-2 Spike RBD assay and cross-correlated with the atomic-level information revealed by molecular dynamics simulations.

View Article and Find Full Text PDF

The importance of neurotransmitter sensing in the diagnosis and treatment of many psychological illnesses and neurodegenerative diseases is non-negotiable. For electrochemical sensors to become widespread and accurate, a long journey must be undertaken for each device, from understanding the materials at the molecular level to real applications in biological fluids. We report a modification of diamondized boron-doped carbon nanowalls (BCNWs) with an electropolymerized polydopamine/polyzwitterion (PDA|PZ) coating revealing tunable mechanical and electrochemical properties.

View Article and Find Full Text PDF

An efficient additive manufacturing-based composite material fabrication for electrochemical applications is reported. The composite is composed of commercially available graphene-doped polylactide acid (G-PLA) 3D printouts and surface-functionalized with nanocrystalline boron-doped diamond foil (NDF) additives. The NDFs were synthesized on a tantalum substrate and transferred to the 3D-printout surface at 200 °C.

View Article and Find Full Text PDF

The 21st century has already brought us a plethora of new threats related to viruses that emerge in humans after zoonotic transmission or drastically change their geographic distribution or prevalence. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was first spotted at the end of 2019 to rapidly spread in southwest Asia and later cause a global pandemic, which paralyzes the world since then. We have designed novel immunosensors targeting conserved protein sequences of the N protein of SARS-CoV-2 based on lab-produced and purified anti-SARS-CoV-2 nucleocapsid antibodies that are densely grafted onto various surfaces (diamond/gold/glassy carbon).

View Article and Find Full Text PDF

Fluorescent nanodiamonds with nitrogen-vacancy centers have become important nanoscale probes for sensing and imaging. The surface chemistry of the nanodiamonds influences their emission, interactions, and quantum properties. In this work, we propose to utilize fluorescent nanodiamonds as photostable markers for investigation of comestible liquids.

View Article and Find Full Text PDF

Boron doped diamond (BDD) has great potential in electrical, and electrochemical sensing applications. The growth parameters, substrates, and synthesis method play a vital role in the preparation of semiconducting BDD to metallic BDD. Doping of other elements along with boron (B) into diamond demonstrated improved efficacy of B doping and exceptional properties.

View Article and Find Full Text PDF

Mirrors are used in optical sensors and measurement setups. This creates a demand for mirrors made of new materials and having various properties tailored to specific applications. In this work, we propose silicon covered with a thin silicon nitride layer as a mirror for near-infrared measurements.

View Article and Find Full Text PDF

The origin of nitrogen-incorporated boron-doped nanocrystalline diamond (NB-NCD) nanowires as a function of substrate temperature () in H/CH/BH/N reactant gases is systematically addressed. Because of , there is a drastic modification in the dimensional structure and microstructure and hence in the several properties of the NB-NCD films. The NB-NCD films grown at low (400 °C) contain faceted diamond grains.

View Article and Find Full Text PDF

Purpose: Surgical resection of hepatocellular carcinoma can be associated with recurrence resulting from the degeneration of residual volume of the liver. The objective was to assess the possibility of using a biocompatible nanofilm, made of a colloid of diamond nanoparticles (nfND), to fill the side after tumour resection and optimize its contact with proliferating liver cells, minimizing their cancerous transformation.

Methods: HepG2 and C3A liver cancer cells and HS-5 non-cancer cells were used.

View Article and Find Full Text PDF

This study reports a novel impedimetric immunosensor for protein D detection in purified and bacterial (Haemophilus influenzae, Hi) samples. The detection was based on antigen recognition by anti-protein D antibodies (apD) immobilised at the maze-like boron-doped carbon nanowall electrodes (B:CNW). The B:CNW electrodes were synthesised, and their surface was characterised by scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS) methods.

View Article and Find Full Text PDF

Direct synthesis of a nano-structured carbon hybrid consisting of vertically aligned carbon nanograsses on top of boron-doped nanocrystalline diamond is demonstrated and the carbon hybrid is further applied as an electrode material for the fabrication of supercapacitors. The hybrid film combines the dual advantages of sp2 (carbon nanograss) and sp3 (nanocrystalline diamond) bonded carbon, possessing not only the excellent electrical characteristics of sp2 carbon but also the exceptional electrochemical stability of sp3 carbon. As a result, the specific capacitance of the as-prepared hybrid material reaches up to 0.

View Article and Find Full Text PDF

The physicochemical and mechanical properties of thin and freestanding heavy boron-doped diamond (BDD) nanosheets coated with a thin C:H:N:O plasma polymer were studied. First, diamond nanosheets were grown and doped with boron on a Ta substrate using the microwave plasma-enhanced chemical vapor deposition technique (MPECVD). Next, the BDD/Ta samples were covered with nylon 6.

View Article and Find Full Text PDF

Phantoms of biological tissues are materials that mimic the properties of real tissues. This study shows the development of phantoms with nanodiamond particles for calibration of T1 relaxation time in magnetic resonance imaging. Magnetic resonance imaging (MRI) is a commonly used and non-invasive method of detecting pathological changes inside the human body.

View Article and Find Full Text PDF

In this work, we reveal in detail the effects of high-temperature treatment in air at 600 °C on the microstructure as well as the physico-chemical and electrochemical properties of boron-doped diamond (BDD) electrodes. The thermal treatment of freshly grown BDD electrodes was applied, resulting in permanent structural modifications of surface depending on the exposure time. High temperature affects material corrosion, inducing crystal defects.

View Article and Find Full Text PDF

Electron emission signifies an important mechanism facilitating the enlargement of devices that have modernized large parts of science and technology. Today, the search for innovative electron emission devices for imaging, sensing, electronics, and high-energy physics continues. Integrating two materials with dissimilar electronic properties into a hybrid material is an extremely sought-after synergistic approach, envisioning a superior field electron emission (FEE) material.

View Article and Find Full Text PDF

Nitrogen-vacancy color centers in diamond are a very promising medium for many sensing applications such as magnetometry and thermometry. In this work, we study nanodiamonds deposited from a suspension onto glass substrates. Fluorescence and optically detected magnetic resonance spectra recorded with the dried-out nanodiamond ensembles are presented and a suitable scheme for tracking the magnetic-field value using a continuous poly-crystalline spectrum is introduced.

View Article and Find Full Text PDF