This review article presents the greatest challenges in modern triticale breeding. Genetic maps that were developed and described thus far, together with the quantitative trait loci and candidate genes linked to important traits are also described. The most important part of this review is dedicated to a winter triticale mapping population based on doubled haploid lines obtained from a cross of the cultivars 'Hewo' and 'Magnat'.
View Article and Find Full Text PDFTolerance to pink snow mold caused by appears after a cold-hardening period and it is an essential, genotype-dependent, complex quantitative trait for the wintering of triticale (x ) and other cereals. Despite long-term studies, a marker for the selection of the tolerant genotypes is still insufficiently recognized. Chlorophyll fluorescence has been reported as a sensitive indicator of stress effects on photosynthesis and can be used to predict plant tolerance.
View Article and Find Full Text PDFTriticale is a cereal of high economic importance; however, along with the increase in the area of this cereal, it is more often infected by the fungal pathogen Blumeria graminis, which causes powdery mildew. The rapid development of molecular biology techniques, in particular methods based on molecular markers may be an important tool used in modern plant breeding. Development of genetic maps, location of the QTLs defining the region of the genome associated with resistance and selection of markers linked to particular trait can be used to select resistant genotypes as well as to pyramidize several resistance genes in one variety.
View Article and Find Full Text PDFMicrodochium nivale is a fungal pathogen that causes yield losses of cereals during winter. Cold hardening under light conditions induces genotype-dependent resistance of a plant to infection. We aim to show how photosystem II (PSII) regulation contributes to plant resistance.
View Article and Find Full Text PDF