Tilapia lake virus (TiLV) disease is highly contagious and causes substantial mortality in tilapia. Currently, no effective treatments or commercial vaccines are available to prevent TiLV infection. In this study, TiLV segment 4 (S4) was cloned into the pET28a(+)vector and transformed into Escherichia coli BL21(DE3).
View Article and Find Full Text PDFSex identification and the selection of monosex male tilapia are crucial for tilapia aquaculture. In this study, we evaluated the application of ultrasonography as an alternative procedure for sex identification and reproductive assessment in Nile tilapia (). Ultrasonography was performed on 23 fish weighing 232-1,281 g to capture longitudinal and transverse images of the ovaries and testes.
View Article and Find Full Text PDFTilapia lake virus (TiLV) presents a substantial threat to global tilapia production. Despite the development of numerous cell lines for TiLV isolation and propagation, none have been specifically derived from red hybrid tilapia ( spp.).
View Article and Find Full Text PDFTilapia lake virus (TiLV) is a novel RNA virus that has been causing substantial economic losses across the global tilapia industry. Despite extensive research on potential vaccines and disease control methods, the understanding of this viral infection and the associated host cell responses remains incomplete. In this study, the involvement of the mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK) pathway in the early stages of TiLV infection was investigated.
View Article and Find Full Text PDFThe outbreak of the novel or Tilapia lake virus (TiLV) is having a severe economic impact on global tilapia aquaculture. Effective treatments and vaccines for TiLV are lacking. In this study, we demonstrated the antiviral activity of ribavirin against TiLV in E-11 cells.
View Article and Find Full Text PDFTilapia lake virus (TiLV) is a highly contagious novel orthomyxo-like RNA virus that is negatively impacting tilapia production worldwide. To prevent TiLV from spreading globally, the infection status of source farms needs to be established prior to the movement of live tilapia to minimize the risk of horizontal transmission. However, testing individual fish for TiLV requires large sample sizes, when within-farm prevalence is low and is costly, time-consuming, and labour-intensive.
View Article and Find Full Text PDF