Publications by authors named "Mateo Vargas"

Purpose: To prospectively monitor the evolution of the resistome of OXA-48-producing Klebsiella species in a patient with long-term colonization, with a particular focus into the plasmid dynamics and the evolution of ceftazidime/avibactam resistance.

Methods: All OXA-48-producing Klebsiella spp. isolates from a single patient admitted to a hospital during seven months were prospectively collected.

View Article and Find Full Text PDF

Little is known about the clonality of consecutive OXA-48 producing-Klebsiella pneumoniae isolates from the same patient and the possibility of changes in their virulomes over time. We studied the molecular characteristics of twenty OXA-48-producing K. pneumoniae consecutive isolates from six patients using whole-genome sequencing.

View Article and Find Full Text PDF
Article Synopsis
  • Concerns over the effects of synthetic fungicides on health and the environment have led to a ban by various government bodies.
  • Numerous studies have focused on finding biological alternatives that can effectively prevent fungal growth, aiming for similar efficacy to chemical pesticides.
  • This review highlights key research on non-yeast biological antagonists aimed at fighting phytopathogenic fungi affecting table grapes, wine grapes, and raisins.
View Article and Find Full Text PDF

In this study, we defined the target population of environments (TPE) for wheat breeding in India, the largest wheat producer in South Asia, and estimated the correlated response to the selection and prediction ability of five selection environments (SEs) in Mexico. We also estimated grain yield (GY) gains in each TPE. Our analysis used meteorological, soil, and GY data from the international Elite Spring Wheat Yield Trials (ESWYT) distributed by the International Maize and Wheat Improvement Center (CIMMYT) from 2001 to 2016.

View Article and Find Full Text PDF

The effects of climate change together with the projected future demand represents a huge challenge for wheat production systems worldwide. Wheat breeding can contribute to global food security through the creation of genotypes exhibiting stress tolerance and higher yield potential. The objectives of our study were to () estimate the annual grain yield (GY) genetic gain of High Rainfall Wheat Yield Trials (HRWYT) grown from 2007 (15th HRWYT) to 2016 (24th HRWYT) across international environments, and () determine the changes in physiological traits associated with GY genetic improvement.

View Article and Find Full Text PDF

Genomic selection (GS) increases genetic gain by reducing the length of the selection cycle, as has been exemplified in maize using rapid cycling recombination of biparental populations. However, no results of GS applied to maize multi-parental populations have been reported so far. This study is the first to show realized genetic gains of rapid cycling genomic selection (RCGS) for four recombination cycles in a multi-parental tropical maize population.

View Article and Find Full Text PDF

We calculated the annual genetic gains for grain yield (GY) of wheat ( L.) achieved over 8 yr of international Elite Spring Wheat Yield Trials (ESWYT), from 2006-2007 (27th ESWYT) to 2014-2015 (34th ESWYT). In total, 426 locations were classified within three main megaenvironments (MEs): ME1 (optimally irrigated environments), ME4 (drought-stressed environments), and ME5 (heat-stressed environments).

View Article and Find Full Text PDF

To increase maize (Zea mays L.) yields in drought-prone environments and offset predicted maize yield losses under future climates, the development of improved breeding pipelines using a multi-disciplinary approach is essential. Elucidating key growth processes will provide opportunities to improve drought breeding progress through the identification of key phenotypic traits, ideotypes, and donors.

View Article and Find Full Text PDF

A recombinant inbred line (RIL) population was evaluated in seven field experiments representing four environments: water stress at flowering (WS) and well-watered (WW) conditions in Mexico and Zimbabwe. The QTLs were identified for each trait in each individual experiment (single-experiment analysis) as well as per environment, per water regime across locations and across all experiments (joint analyses). For the six target traits (male flowering, anthesis-to-silking interval, grain yield, kernel number, 100-kernel fresh weight and plant height) 81, 57, 51 and 34 QTLs were identified in the four step-wise analyses, respectively.

View Article and Find Full Text PDF

Linkage disequilibrium can be used for identifying associations between traits of interest and genetic markers. This study used mapped diversity array technology (DArT) markers to find associations with resistance to stem rust, leaf rust, yellow rust, and powdery mildew, plus grain yield in five historical wheat international multienvironment trials from the International Maize and Wheat Improvement Center (CIMMYT). Two linear mixed models were used to assess marker-trait associations incorporating information on population structure and covariance between relatives.

View Article and Find Full Text PDF

The study of QTL x environment interaction (QEI) is important for understanding genotype x environment interaction (GEI) in many quantitative traits. For modeling GEI and QEI, factorial regression (FR) models form a powerful class of models. In FR models, covariables (contrasts) defined on the levels of the genotypic and/or environmental factor(s) are used to describe main effects and interactions.

View Article and Find Full Text PDF