Difference far-field patterns represent a way for pin-pointing a target in both azimuth and elevation, extremely useful in radar applications. At the present work, an innovative method for synthesizing good compromise solutions among sum and difference patterns providing low complexity of the antenna feeding network for uniform thinned arrays is addressed. This procedure uses a hybrid version of the Simulated Annealing algorithm (hybrid SA) to optimize a cost function of radiation characteristics for both sum and difference patterns as peak directivity and side lobe level (SLL) while fixing deep nulls.
View Article and Find Full Text PDFSensors (Basel)
January 2022
The present work develops an innovative methodology for fixing deep nulls in radiation patterns of symmetrical thinned arrays while maintaining a low side lobe level (SLL) and a high directivity, implementing an optimization strategy based on the simulated annealing algorithm (SA). This procedure optimizes a cost function that has a term for each characteristic of the desired radiation pattern and can distinguish between the deep nulls and the filled ones depending on whether they are on the Schelkunoff unit circle or not. Then, a direct extension of the methodology for planar arrays based on the separable distribution procedure is addressed.
View Article and Find Full Text PDF