The mammalian circadian system develops gradually during ontogenesis, and after birth, the system is already set to a phase of the mothers. The role of maternal melatonin in the entrainment of fetal circadian clocks has been suggested, but direct evidence is lacking. In our study, intact or pinealectomized pregnant rats were exposed to constant light (LL) throughout pregnancy to suppress the endogenous melatonin and behavioral rhythms.
View Article and Find Full Text PDFMammalian retina contains a circadian clock that is composed of components similar to those of the master circadian clock within the suprachiasmatic nuclei of the hypothalamus. The aim of the present study was to elucidate whether, when, and where the transcripts of the clock genes Per1 and Per2 and the immediate early gene c-fos are spontaneously expressed and/or induced by light in the newborn rat retina. At postnatal day 1 (P1), P3, P5, and P10, Wistar rat pups were released into constant darkness, and a 30-minute light pulse was administered during the subjective day or during the first or second part of subjective night.
View Article and Find Full Text PDFThe molecular mechanism underlying circadian rhythmicity within the suprachiasmatic nuclei (SCN) of the hypothalamus has two light-sensitive components, namely the clock genes Per1 and Per2. Besides, light induces the immediate-early gene c-fos. In adult rats, expression of all three genes is induced by light administered during the subjective night but not subjective day.
View Article and Find Full Text PDFThe molecular clockwork underlying the generation of circadian rhythmicity within the suprachiasmatic nucleus (SCN) develops gradually during ontogenesis. The authors' previous work has shown that rhythms in clock gene expression in the rat SCN are not detectable at embryonic day (E) 19, start to form at E20 and develop further via increasing amplitude until postnatal day (P) 10. The aim of the present work was to elucidate whether and how swiftly the immature fetal and neonatal molecular SCN clocks can be reset by maternal cues.
View Article and Find Full Text PDFThe circadian system controls the timing of behavioral and physiological functions in most organisms studied. The review addresses the question of when and how the molecular clockwork underlying circadian oscillations within the central circadian clock in the suprachiasmatic nuclei of the hypothalamus (SCN) and the peripheral circadian clocks develops during ontogenesis. The current model of the molecular clockwork is summarized.
View Article and Find Full Text PDF