Publications by authors named "Mateja Senicar"

In the absence of naturally available galactofuranose-specific lectin, we report herein the bioengineering of GalNeoLect, from the first cloned wild-type galactofuranosidase ( sp. strain JHA19), which recognises and binds a single monosaccharide that is only related to nonmammalian species, usually pathogenic microorganisms. We kinetically characterised the GalNeoLect to confirm attenuation of hydrolytic activity and used competitive inhibition assay, with close structural analogues of Gal, to show that it conserved interaction with its original substrate.

View Article and Find Full Text PDF

Nasopharyngeal samples are currently accepted as the standard diagnostic samples for nucleic acid amplification testing and antigenic testing for the SARS-CoV-2 virus. In addition to the diagnostic capacity of SARS-CoV-2-positive crude nasopharyngeal samples, their qualitative potential for direct glycan-specific analysis, in order to uncover unique glycol profiles, was assessed. In this study we provide glycan characterization of SARS-CoV-2-positive and -negative nasopharyngeal samples directly from lectin interactions.

View Article and Find Full Text PDF

Galactofuranose is a rare form of the well-known galactose sugar, and its occurrence in numerous pathogenic micro-organisms makes the enzymes responsible for its biosynthesis interesting targets. Herein, we review the role of these carbohydrate-related proteins with a special emphasis on the galactofuranosidases we recently characterized as an efficient recombinant biocatalyst.

View Article and Find Full Text PDF

Despite the crucial role of the rare galactofuranose (Galf) in many pathogenic micro-organisms and our increased knowledge of its metabolism, there is still a lack of recombinant and efficient galactofuranoside hydrolase available for chemo-enzymatic synthetic purposes of specific galactofuranosyl-conjugates. Subcloning of the Galf-ase from JHA 19 Streptomyces sp. and its further overexpression lead us to the production of this enzyme with a yield of 0.

View Article and Find Full Text PDF

Structural alterations of the aglycon portions of α-mannosides influence their inhibitory potency toward type 1-fimbriated Escherichia coli. The aim of our work was to prepare and explore inhibitory properties of novel mannosylated N-aryl-substituted 3-hydroxypyridine-4-ones because they possess needed structural characteristics as possible FimH antagonists. Hemagglutination inhibitory tests showed that the examined 3-hydroxypyridine-4-one α-mannosides exhibited better inhibitory activity than methyl α-d-mannopyranoside used as a reference compound.

View Article and Find Full Text PDF