Environ Geochem Health
June 2024
An important aspect of geochemical studies is determining health hazard of potentially toxic elements (PTEs). Key information on PTEs behaviour in the human body in case of their ingestion is provided with the use of in vitro bioaccessibility tests. We analysed and compared oral bioaccessibility of a wide range of PTEs (As, Cd, Ce, Cr, Cu, Hg, La, Li, Ni, Pb, Sb, Sn, Zn), including some that are not often studied but might pose a human health hazard, in soil, attic dust, street dust, and household dust, using Unified BARGE Method (UBM).
View Article and Find Full Text PDFA comprehensive study of attic dust in an urban area is presented. Its entire life cycle, from determining historical emission sources to recognising the processes that take place in attic dust and its potential to impact human health is discussed. Its chemical composition and morphological characteristics of individual solid particles reflect past anthropogenic activities.
View Article and Find Full Text PDFJ Environ Manage
April 2022
Mining waste deposits (MWDs) represent significant and constant pollution source for the environment worldwide, thus it is very important to identify and diminish their environmental impacts. The aim of this study was to determine long-term environmental impacts and their temporal variations of MWDs in Pb-Zn mining districts in Slovenia and assess stability of potentially harmful element (PHE)-bearing phases in stream water. The results showed that investigated MWDs are important source of PHEs in stream sediments and that PHEs mostly occur as fine-grained and liberated PHE-bearing ore minerals.
View Article and Find Full Text PDFOne of the main sources of potential chronic exposure to potentially toxic elements is household dust, especially in an environment with known point sources of PTE pollution. The literature review clearly shows that the total concentrations of an element in the environment do not provide information to predict its bioavailability. The aim of the present study was to evaluate the oral and inhalation bioaccessibility of PTE present in household dust in the small town of Idrija, the site of the former mercury mine.
View Article and Find Full Text PDFAirborne particulate matter (PM) has a major impact on the biogeochemical cycles of chemical elements in the urban environment. Anthropogenic-derived PM emissions are the cause of some of the most severe environmental and health problems. The presented study aims to improve our knowledge of PM dynamics by introducing a multi-media, multi-analytical and multi-elemental holistic approach to geochemical studies of inorganic PM in the urban environment.
View Article and Find Full Text PDFA geochemical study of snow from the industrial town of Maribor (Slovenia) was performed. Concentrations of 61 elements in meltwater were determined, and a detailed semi-quantitative and qualitative analysis of individual PTE-bearing particles deposited in snow was performed with SEM/EDS. The physico-chemical characteristics of meltwater reflect the influence of winter road maintenance (high electrical conductivity and high Ca and Na concentrations close to the main roads) and industrial activities.
View Article and Find Full Text PDFAttic and household dusts from Pb-polluted area were investigated using various analytical techniques for source apportionment and assessment of source contribution of metal-bearing phases. Mineralogically, attic dust consists of gypsum, anhydrite, and metal-bearing phases, while household dust comprises C-bearing particles and only minor metal-bearing phases. Sulfur isotope composition of sulfides and sulfates in attic dust shows that they result from past primary smelting of local sulfide ore, while those in household dust originate directly from local mine-waste material.
View Article and Find Full Text PDFStorage of bottled waters in varying ambient conditions affects its characteristics. Different storage conditions cause changes in the initial chemical composition of bottled water which lead to the occurrence of precipitates with various morphologies. In order to assess the relationship between water composition, storage conditions and precipitate morphology, a study of four brands of Slovenian bottled water stored in PET bottles was carried out.
View Article and Find Full Text PDFA comprehensive geochemical investigation of potentially harmful elements (PHEs) in household dust from the town of Idrija (Slovenia), once a world-famous Hg mining town that is now seriously polluted, was performed for the first time. After aqua regia digestion, the content of mercury (Hg), arsenic (As), cadmium (Cd), cobalt (Co), chromium (Cr), copper (Cu), molybdenum (Mo), nickel (Ni), lead (Pb) and zinc (Zn) was measured. PHE-bearing particles were recognised and observed by scanning electron microscopy and energy-dispersive spectrometry before and after exposure to simulated stomach acid (SSA).
View Article and Find Full Text PDFWe report here the first draft assembly for the genome of Acinetobacter idrijaensis strain MII, isolated from the Idrija mercury mine area (Slovenia). This strain shows a strikingly high tolerance to mercury, and the genome sequence shows genes involved in the mechanisms for heavy metal tolerance pathways and multidrug efflux pumps.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
February 2015
Detailed scanning electron microscopy/energy dispersive spectroscopy of metal-bearing particles in snow deposits and stream sediment from a steelworks area was performed. Identified metal-bearing phases were apportioned according to their chemical and morphological characteristics to anthropogenic phases and secondary weathering products. Anthropogenic metal-bearing phases are the most abundant in both media and are represented by various irregular ferrous oxides, ferrous alloys, spherical ferrous oxides, and ferrous silicates with variable contents of Cr, Mn, Ni, V, W, and Mo.
View Article and Find Full Text PDFEnviron Geochem Health
June 2014
Road sediments from gully pots of the drainage system and stream sediments from local streams were investigated for the first time in the urban area of Idrija town, the central part of the second largest and strongly contaminated Hg mining district in the world. Hg concentrations in road sediments were lower than in stream sediments. They ranged from 16 to 110 mg/kg (Md = 29 mg/kg) for <0.
View Article and Find Full Text PDFSolid particles in snow deposits, sampled in mining and Pb-processing area of Žerjav, Slovenia, have been investigated using scanning electron microscopy/energy-dispersive X-ray spectroscopy (SEM/EDS). Identified particles were classified as geogenic-anthropogenic, anthropogenic, and secondary weathering products. Geogenic-anthropogenic particles were represented by scarce Zn- and Pb-bearing ore minerals, originating from mine waste deposit.
View Article and Find Full Text PDFThe aim of this paper was to test the new sampling media-earthworm casts in a highly contaminated area. The investigation was carried out at the ancient Hg ore roasting site Pšenk in the surroundings of Idrija, where extremely high Hg contents in soils and SOM were determined in previous investigations. 32 earthworm cast samples were collected in the research grid 30 × 30 m in order to compare the Hg contents and spatial distribution in earthworm casts to the values and distributions in SOM and soil (0-15 cm).
View Article and Find Full Text PDFEnviron Geochem Health
January 2012
Five centuries of mining and processing of mercury ore in the Idrija area have resulted in widespread contamination of different environmental compartments. Environmental impacts on a regional and local scale, caused by atmospheric emissions from the Idrija ore roasting plant, were established in the investigations of mercury spatial distribution in soil and attic dust in 160 km(2) area. Very high values were determined in the Idrijca River valley, and they decrease exponentially with the distance from Idrija.
View Article and Find Full Text PDFSci Total Environ
October 2006
Total Hg concentrations and Hg speciation were determined in soils and attic dust in a 160 km2 area around Idrija mercury mine. Attic dust as well as a sample of soil was collected at 100 locations. Mercury phases were separated into cinnabar and non-cinnabar compounds via a thermo-desorption technique.
View Article and Find Full Text PDFSci Total Environ
September 2006
From the historic literature on the Idrija mercury mine, it is evident that part of the smelting and mining waste was dumped into the Idrijca River. This waste was transported downstream during floods. The amount of mercury which has accumulated in the alluvial sediments of the Idrijca River until the present was studied.
View Article and Find Full Text PDF