Hyaluronan, a linear glycosaminoglycan comprising D-N-acetylglucosamine and D-glucuronic acid, is the main component of the extracellular matrix. Its influence on cell proliferation, migration, inflammation, signalling, and other functions, depends heavily on its molecular weight and chemical modification. Unsaturated HA oligosaccharides are available in defined length and purity.
View Article and Find Full Text PDFHyaluronan (HA) has been recently identified as a key component of the densification of thoracolumbar fascia (TLF), a potential contributor to non-specific lower back pain (LBP) currently treated with manual therapy and systemic or local delivery of anti-inflammatory drugs. The aim of this study was to establish a novel animal model suitable for studying ultrasound-guided intrafascial injection prepared from HA with low and high Mw. Effects of these preparations on the profibrotic switch and mechanical properties of TLF were measured by qPCR and rheology, respectively, while their lubricating properties were evaluated by tribology.
View Article and Find Full Text PDFExposure to the sun affects the skin and may eventually result in UV-induced skin damage. It is generally known that hyaluronan (HA) is one of the main structural and functional components of the skin. However, UV-related changes in the HA metabolism in the skin have not yet been elucidated.
View Article and Find Full Text PDFPopularity of hyaluronan (HA) in the cosmetics and pharmaceutical industries, led to the investigation and development of new HA-based materials, with enzymes playing a key role. Beta-D-glucuronidases catalyze the hydrolysis of a beta-D-glucuronic acid residue from the non-reducing end of various substrates. However, lack of specificity towards HA for most beta-D-glucuronidases, in addition to the high cost and low purity of those active on HA, have prevented their widespread application.
View Article and Find Full Text PDFThe ability of hyaluronan as a dietary supplement to increase skin moisture and relieve knee pain has been demonstrated in several clinical studies. To understand the mechanism of action, determining hyaluronan's bioavailability and in vivo fate is crucial. Here, we used C-hyaluronan combined with LC-MS analysis to compare the absorption and metabolism of oral hyaluronan in germ-free and conventional wild-type mice.
View Article and Find Full Text PDFPeritoneal adhesions are postsurgical fibrotic complications connected to peritoneal inflammation. The exact mechanism of development is unknown; however, an important role is attributed to activated mesothelial cells (MCs) overproducing macromolecules of extracellular matrix (ECM), including hyaluronic acid (HA). It was suggested that endogenously-produced HA contributes to the regulation of different fibrosis-related pathologies.
View Article and Find Full Text PDFA cascade of reactions known as the foreign body response (FBR) follows the implantation of biomaterials leading to the formation of a fibrotic capsule around the implant and subsequent health complications. The severity of the FBR is driven mostly by the physicochemical characteristics of implanted material, the method and place of implantation, and the degree of immune system activation. Here we present an in vitro model for assessing new materials with respect to their potential to induce a FBR in the peritoneum.
View Article and Find Full Text PDFHyaluronan is being investigated extensively as a biocompatible and biodegradable material for use in biomedical applications. While the derivatization of hyaluronan broadens its potential therapeutic use, the pharmacokinetics and metabolization of the derivatives must be thoroughly investigated. The fate of intraperitoneally-applied native and lauroyl-modified hyaluronan films with varying degrees of substitution was investigated in-vivo employing an exclusive stable isotope-labelling approach and LC-MS analysis.
View Article and Find Full Text PDFHyaluronan (HA) comprises a fundamental component of the extracellular matrix and participates in a variety of biological processes. Half of the total amount of HA in the human body is present in the skin. HA exhibits a dynamic turnover; its half-life in the skin is less than one day.
View Article and Find Full Text PDFThere is inconsistent information regarding the size effects of exogenously given hyaluronan on its in vivo fate. The data are often biased by the poor quality of hyaluronan and non-ideal labelling strategies used for resolving exogenous/endogenous hyaluronan, which only monitor the label and not hyaluronan itself. To overcome these drawbacks and establish the pharmacokinetics of intravenous hyaluronan in relation to its M, C-labelled HA of five Ms from 13.
View Article and Find Full Text PDFThe aim of this paper is to review chromatographic and mass-spectrometric methods and underline the best analytical approaches for successful analysis of various hyaluronic acid species in different types of samples. Hyaluronan-degrading enzymes and chemical depolymerization produce di- or oligosaccharides suitable for hyaluronan quantification or structural characterization of hyaluronan derivatives. Efficient purification and pre-column derivatization of hyaluronan disaccharides by reductive amination allow subnanogram quantification in biological samples.
View Article and Find Full Text PDFThe effect of hydrazide linkers on the formation and mechanical properties of hyaluronan hydrogels was intensively evaluated. The reaction kinetics of hydrazone formation was monitored by NMR spectroscopy under physiological conditions where polyaldehyde hyaluronan (unsaturated: ΔHA-CHO, saturated: HA-CHO) was reacted with various hydrazides to form hydrogels. Linear (adipic, oxalic dihydrazide) and branched (N,N´,N´´-tris(hexanoylhydrazide-6-yl)phosphoric triamide and 4-arm-PEG hydrazide) hydrazides were compared as crosslinking agents.
View Article and Find Full Text PDFA better understanding of in vivo behavior of nanocarriers is necessary for further improvement in their development. Here we present a novel approach, where both the matrix and the drug can be analyzed by LCMS/MS after one sample handling. The developed method was applied for the comparison of pharmacokinetic profile of free and encapsulated doxorubicin (DOX) in oleyl hyaluronan (HA-C18:1) polymeric micelles.
View Article and Find Full Text PDFCoupling of ion mobility with mass spectrometry has brought new frontiers in separation and quantitation of a wide range of isobaric/isomeric compounds. Ion mobility spectrometry may separate ions possessing the identical molecular formula but having different molecular shapes. The separation space in most commercially available instruments is limited and rarely the mobility resolving power exceeds one hundred.
View Article and Find Full Text PDF