Publications by authors named "Matej Gallo"

Recording the provenance of scientific computation results is key to the support of traceability, reproducibility and quality assessment of data products. Several data models have been explored to address this need, providing representations of workflow plans and their executions as well as means of packaging the resulting information for archiving and sharing. However, existing approaches tend to lack interoperable adoption across workflow management systems.

View Article and Find Full Text PDF

Diagnostic histopathology faces increasing demands due to aging populations and expanding healthcare programs. Semi-automated diagnostic systems employing deep learning methods are one approach to alleviate this pressure. The learning models for histopathology are inherently complex and opaque from the user's perspective.

View Article and Find Full Text PDF

AI development in biotechnology relies on high-quality data to train and validate algorithms. The FAIR principles (Findable, Accessible, Interoperable, and Reusable) and regulatory frameworks such as the In Vitro Diagnostic Regulation (IVDR) and the Medical Device Regulation (MDR) specify requirements on specimen and data provenance to ensure the quality and traceability of data used in AI development. In this paper, a framework is presented for recording and publishing provenance information to meet these requirements.

View Article and Find Full Text PDF

Provenance is information describing the lineage of an object, such as a dataset or biological material. Since these objects can be passed between organizations, each organization can document only parts of the objects life cycle. As a result, interconnection of distributed provenance parts forms distributed provenance chains.

View Article and Find Full Text PDF

The diagnosis of solid tumors of epithelial origin (carcinomas) represents a major part of the workload in clinical histopathology. Carcinomas consist of malignant epithelial cells arranged in more or less cohesive clusters of variable size and shape, together with stromal cells, extracellular matrix, and blood vessels. Distinguishing stroma from epithelium is a critical component of artificial intelligence (AI) methods developed to detect and analyze carcinomas.

View Article and Find Full Text PDF