Publications by authors named "Matej Butala"

DNA molecules are a promising data storage medium for the future; however, effective synthesis of DNA using an enzyme that catalyzes the polymerization of natural nucleoside triphosphates in a user-defined manner, without the need for multiple injections of polymerase, remains a challenge. In the present study, we demonstrated that the bacteriophage abortive infection system reverse transcriptase AbiK from facilitates such an approach. We employed surface plasmon resonance to monitor the polymerization of the DNA strand with a user-defined sequence of multiple segments through a sequential buffer exchange process.

View Article and Find Full Text PDF

Betatectiviruses are prophages consisting of linear extrachromosomal genomes without obvious plasmid modules. It remains unclear how betatectiviruses are maintained in low-copy numbers in host cells and how they are vertically transmitted. Phage GIL01 is a model betatectivirus that infects the mosquito pathogen Bacillus thuringiensis serovar israelensis.

View Article and Find Full Text PDF

As part of their survival strategy under harsh environmental conditions, endospore-forming bacteria can trigger a sporulation developmental program. Although the regulatory cascades that precisely control the transformation of vegetative bacteria into mother cells and resilient spores have been described in detail, less is known about how bacteriophages that prey on endospore-formers exploit sporulation. Herein, we argue that phages infecting these bacteria have evolved several specific molecular mechanisms, not yet known in other bacteria, that manifest from the phage-driven alliance to negative effects on the host.

View Article and Find Full Text PDF

TGA (TGACG-binding) transcription factors, which bind their target DNA through a conserved basic region leucine zipper (bZIP) domain, are vital regulators of gene expression in salicylic acid (SA)-mediated plant immunity. Here, we investigated the role of StTGA2.1, a potato (Solanum tuberosum) TGA lacking the full bZIP, which we named a mini-TGA.

View Article and Find Full Text PDF

Bacterial resistance is an increasing threat to healthcare systems, highlighting the need for discovering new antibacterial agents. An established technique, fragment-based drug discovery, was used to target a bacterial enzyme Ddl involved in the biosynthesis of peptidoglycan. We assembled general and focused fragment libraries that were screened in a biochemical inhibition assay.

View Article and Find Full Text PDF

Bacillus thuringiensis serovar israelensis is the most widely used biopesticide against insects, including vectors of animal and human diseases. Among several extrachromosomal elements, this endospore-forming entomopathogen harbors two bacteriophages: a linear DNA replicon named GIL01 that does not integrate into the chromosome during lysogeny and a circular-jumbo prophage known as pBtic235. Here, we show that GIL01 hinders the induction of cohabiting prophage pBtic235.

View Article and Find Full Text PDF

The formation of giant hailstones is a rare weather event that has devastating consequences in inhabited areas. This hazard has been occurring more frequently and with greater size of hailstones in recent years, and thus needs to be better understood. While the generally accepted mechanism is thought to be a process similar to the formation of smaller hailstones but with exceptional duration and stronger updrafts, recent evidence suggests that biotic and abiotic factors also influence the growth of these unusually large ice chunks.

View Article and Find Full Text PDF

Encapsulation of a selected DNA molecule in a cell has important implications for bionanotechnology. Non-viral proteins that can be used as nucleic acid containers include proteinaceous subcellular bacterial microcompartments (MCPs) that self-assemble into a selectively permeable protein shell containing an enzymatic core. Here, we adapted a propanediol utilization (Pdu) MCP into a synthetic protein cage to package a specified DNA segment in vivo, thereby enabling subsequent affinity purification.

View Article and Find Full Text PDF

Acinetobacter baumannii poses a great threat in health care settings worldwide, with clinical isolates displaying an ever-evolving multidrug resistance. In strains of A. baumannii, expression of multiple error-prone polymerase genes are corepressed by UmuDAb, a member of the LexA superfamily, and a small protein, DdrR.

View Article and Find Full Text PDF

The abundance of polyphenols in edible plants makes them an important component of human nutrition. Considering the ongoing COVID-19 pandemic, a number of studies have investigated polyphenols as bioactive constituents. We applied in-silico molecular docking as well as molecular dynamics supported by in-vitro assays to determine the inhibitory potential of various plant polyphenols against an important SARS-CoV-2 therapeutic target, the protease 3CL.

View Article and Find Full Text PDF

The SARS-CoV-2 RNA-dependent RNA polymerase (RdRp) is essential for virus replication, therefore it is a promising drug target. Here we present a surface plasmon resonance approach to study the interaction of RdRp with drugs in real time. We monitored the effect of favipiravir, ribavirin, sofosbuvir triphosphate PSI-7409 and suramin on RdRp binding to RNA immobilized on the chip.

View Article and Find Full Text PDF

Aegerolysins are proteins produced by bacteria, fungi, plants and protozoa. The most studied fungal aegerolysins share a common property of interacting with membranes enriched with cholesterol in combination with either sphingomyelin or ceramide phosphorylethanolamine (CPE), major sphingolipids in the cell membranes of vertebrates and invertebrates, respectively. However, genome analyses show a particularly high frequency of aegerolysin genes in bacteria, including the pathogenic genera Pseudomonas and Vibrio; these are human pathogens of high clinical relevance and can thrive in a variety of other species.

View Article and Find Full Text PDF

Cells employ specific and nonspecific mechanisms to protect their genome integrity against exogenous and endogenous factors. The clbS gene is part of the polyketide synthase machinery (pks genomic island) encoding colibactin, a genotoxin implicated in promoting colorectal cancer. The pks is found among the Enterobacteriaceae, in particular Escherichia coli strains of the B2 phylogenetic group.

View Article and Find Full Text PDF

Bacteria identify and respond to DNA damage using the SOS response. LexA, a central repressor in the response, has been implicated in the regulation of lysogeny in various temperate bacteriophages. During infection of Bacillus thuringiensis with GIL01 bacteriophage, LexA represses the SOS response and the phage lytic cycle by binding DNA, an interaction further stabilized upon binding of a viral protein, gp7.

View Article and Find Full Text PDF

Transcription in most bacteria is tightly regulated in order to facilitate bacterial adaptation to different environments, and transcription factors play a key role in this. Here we give a brief overview of the essential features of bacterial transcription factors and how they affect transcript initiation at target promoters. We focus on complex promoters that are regulated by combinations of activators and repressors, combinations of repressors only, or combinations of activators.

View Article and Find Full Text PDF

The GIL01 bacteriophage is a temperate phage that infects the insect pathogen Bacillus thuringiensis. During the lytic cycle, phage gene transcription is initiated from three promoters: P1 and P2, which control the expression of the early phage genes involved in genome replication and P3, which controls the expression of the late genes responsible for virion maturation and host lysis. Unlike most temperate phages, GIL01 lysogeny is not maintained by a dedicated phage repressor but rather by the host's regulator of the SOS response, LexA.

View Article and Find Full Text PDF

Proteins of the aegerolysin family span many kingdoms of life. They are relatively widely distributed in bacteria and fungi, but also appear in plants, protozoa and insects. Despite being produced in abundance in cells at specific developmental stages and present in secretomes, only a few aegerolysins have been studied in detail.

View Article and Find Full Text PDF

The periodontopathogen Aggregatibacter actinomycetemcomitans synthesizes several virulence factors, including cytolethal distending toxin (CDT). The active CDT holoenzyme is an AB-type tripartite genotoxin that affects eukaryotic cells. Subunits CdtA and CdtC (B-components) allow binding and intracellular translocation of the active CdtB (A-component), which elicits nuclear DNA damage.

View Article and Find Full Text PDF

The SOS response is an essential process for responding to DNA damage in bacteria. The expression of SOS genes is under the control of LexA, a global transcription factor that undergoes self-cleavage during stress to allow the expression of DNA repair functions and delay cell division until the damage is rectified. LexA also regulates genes that are not part of this cell rescue program, and the induction of bacteriophages, the movement of pathogenicity islands, and the expression of virulence factors and bacteriocins are all controlled by this important transcription factor.

View Article and Find Full Text PDF

In a genetically uniform bacterial population a small subset of antibiotic-susceptible cells enter an antibiotic tolerant state and are hence referred to as persisters. These have been proposed to be rare phenotypic variants with several stochastically activated independent parallel processes. Here we show an overlooked phenomenon, bacterial tolerance of extraordinary high levels of ampicillin due to encasement of viable cells by an antibiotic induced network of cell debris.

View Article and Find Full Text PDF

The LexA regulated SOS network is a bacterial response to DNA damage of metabolic or environmental origin. In Clostridium difficile, a nosocomial pathogen causing a range of intestinal diseases, the in-silico deduced LexA network included the core SOS genes involved in the DNA repair and genes involved in various other biological functions that vary among different ribotypes. Here we describe the construction and characterization of a lexA ClosTron mutant in C.

View Article and Find Full Text PDF

The heteronemertine Parborlasia corrugatus contains a cytolytic protein, parborlysin, which after extensive purification was found by Edman sequencing to be a mixture of several homologues. To investigate this microheterogeneity and enable the analysis of single toxins, we have obtained seven parborlysin isoform genes from P. corrugatus collected in Antarctica.

View Article and Find Full Text PDF

The SOS response in Eubacteria is a global response to DNA damage and its activation is increasingly associated with the movement of mobile genetic elements. The temperate phage GIL01 is induced into lytic growth using the host's SOS response to genomic stress. LexA, the SOS transcription factor, represses bacteriophage transcription by binding to a set of SOS boxes in the lysogenic promoter P1.

View Article and Find Full Text PDF

Colicins are plasmid-encoded narrow spectrum antibiotics that are synthesized by strains of Escherichia coli and govern intraspecies competition. In a previous report, we demonstrated that the global transcriptional factor IscR, co dependently with the master regulator of the DNA damage response, LexA, delays induction of the pore forming colicin genes after SOS induction. Here we show that IscR is not involved in the regulation of nuclease colicins, but that the AsnC protein is.

View Article and Find Full Text PDF

The opportunistic pathogen Pseudomonas aeruginosa uses quorum-sensing systems to regulate collective behaviour in response to the environment, by linking the expression of particular genes to population density. The quorum-sensing transcription factors LasR and RhlR and their cognate N-acyl-homoserine lactone (HSL) signals N-3-oxo-dodecanoyl-L-HSL (3OC12-HSL) and N-butanoyl-L-HSL (C4-HSL) control the expression of several hundred genes, which include those involved in virulence and biofilm formation. Here, we have focused on regulation of the expression of the putative virulence factor gene, rahU.

View Article and Find Full Text PDF