Publications by authors named "Matej Bracic"

Polyester biomaterials play a crucial in vascular surgery, but suffer from unspecific protein adsorption, thrombogenicity, and inadequate endothelial cell response, which limit their success. To address these issues, we investigated the functionalization of polyester biomaterials with antithrombogenic polysaccharide coatings. A two-step and water-based method was used to coat cationized polycaprolactone with different sulfated polysaccharides (SPS), which resulted in long-term stability, tunable morphology, roughness, film thickness, chemical compositions, zeta potential, and water content.

View Article and Find Full Text PDF

Examining the critical role of anticoagulants in medical practice, particularly their central function in preventing abnormal blood clotting, is of the utmost importance. However, the study of interactions between blood proteins and alternative anticoagulant nano-surfaces is still understood poorly. In this study, novel approach involving direct functionalisation of magnetic iron oxide nanoparticles (MNPs) as carriers with sulphated dextran (s-dext) is presented, with the aim of evaluating the potential of magnetically-responsive MNPs@s-dext as anticoagulants.

View Article and Find Full Text PDF

This work reports about the conjugation of glycine C-terminal ethyl and methyl ester peptides and L-tryptophan methyl ester with sodium hyaluronate in aqueous solutions using the peptide coupling agent DMTMM (or short DMT, 4-(4,6-dimethoxy-1,3,5-triazin-2-yl)-4-methyl-morpholinium chloride). Detailed infrared (IR) absorbance and H and C (2D) NMR studies (heteronuclear multi-bond correlation spectroscopy, HMBC) confirmed covalent and regioselective amide bonds with the D-glucuronate, but also proves the presence of DMT traces in all conjugates. The ethyl ester`s methyl protons on the peptides` C-terminal could be used to quantify the degree of substitution of the peptide on the hyaluronate scaffold by NMR.

View Article and Find Full Text PDF

Hybrid collagen (Coll) bioscaffolds have emerged as a promising solution for tissue engineering (TE) and regenerative medicine. These innovative bioscaffolds combine the beneficial properties of Coll, an important structural protein of the extracellular matrix, with various other biomaterials to create platforms for long-term cell growth and tissue formation. The integration or cross-linking of Coll with other biomaterials increases mechanical strength and stability and introduces tailored biochemical and physical factors that mimic the natural tissue microenvironment.

View Article and Find Full Text PDF

Biopolymers, such as pullulan, a natural exopolysaccharide from , and their nanocomposites are commonly used in the food, pharmaceutical, and medical industries due to their unique physical and chemical properties. Pullulan was synthesized by the ATCC 201253 strain. Nanocomposite films based on biosynthesized pullulan were prepared and loaded with different concentrations of silver nanoparticles (AgNPs) synthesized by the strain JTW1.

View Article and Find Full Text PDF

Biocatalysis is increasingly becoming an alternative method for the synthesis of industrially relevant complex molecules. This can be realized by using enzyme immobilized polysaccharide-based 3D scaffolds as compatible carriers, with defined properties. Especially, immobilization of either single or multiple enzymes on a 3D printed polysaccharide scaffold, exhibiting well-organized interconnected porous structure and morphology, is a versatile approach to access the performance of industrially important enzymes.

View Article and Find Full Text PDF

Quartz crystal microbalance (QCM) is a real-time, nanogram-accurate technique for analyzing various processes on biomaterial surfaces. QCM has proven to be an excellent tool in tissue engineering as it can monitor key parameters in developing cellular scaffolds. This review focuses on the use of QCM in the tissue engineering of cartilage.

View Article and Find Full Text PDF

Succinylation of proteins is a commonly encountered reaction in biology and introduces negatively charged carboxylates on previously basic primary amine groups of amino acid residues. In analogy, this work investigates the succinylation of primary amines of the synthetic polyelectrolyte polyallylamine (PAA). It investigates the influence of the degree of succinylation on the cytotoxicity and antibacterial activity of the resulting polymers.

View Article and Find Full Text PDF

The application of hydrogels coupled with 3-dimensional (3D) printing technologies represents a modern concept in scaffold development in cartilage tissue engineering (CTE). Hydrogels based on natural biomaterials are extensively used for this purpose. This is mainly due to their excellent biocompatibility, inherent bioactivity, and special microstructure that supports tissue regeneration.

View Article and Find Full Text PDF

We report here a one-step aqueous method for the synthesis of isolated and purified polysaccharide-amino acid conjugates. Two different types of amino acid esters: glycine methyl ester and L-tryptophan methyl ester, as model compounds for peptides, were conjugated to the polysaccharide carboxymethylcellulose (CMC) in water using carbodiimide at ambient conditions. Detailed and systematic pH-dependent charge titration and spectroscopy (infrared, nuclear magnetic resonance: H, C- DEPT 135, H- C HMBC/HSQC correlation), UV-vis, elemental and ninhydrin analysis provided solid and direct evidence for the successful conjugation of the amino acid esters to the CMC backbone via an amide bond.

View Article and Find Full Text PDF

Medical implant-associated infections resulting from biofilm formation triggered by unspecific protein adsorption are the prevailing cause of implant failure. However, implant surfaces rendered with multifunctional bioactive nanocoatings offer a promising alternative to prevent the initial attachment of bacteria and effectively interrupt biofilm formation. The need to research and develop novel and stable bioactive nanocoatings for medical implants and a comprehensive understanding of their properties in contact with the complex biological environment are crucial.

View Article and Find Full Text PDF

In this study, we report the isolation of cellulose nanocrystals (CNCs) from Isora plant fibers by sulfuric acid hydrolysis and their assembly on hydrophilic cellulose and silicon-di-oxide (SiO) surfaces via a layer-by-layer (LBL) deposition method. The isolated CNCs were monodispersed and exhibited a length of 200-300 nm and a diameter of 10-20 nm, a negative zetapotential (-34-39 mV) over a wide pH range, and high stability in water at various concentrations. The multi-layered structure, adsorbed mass, conformational changes, and anticoagulant activity of sequentially deposited anionic (sulfated) CNCs and cationic polyethyleneimine (PEI) on the surfaces of cellulose and SiO by LBL deposition were investigated using a quartz crystal microbalance technique.

View Article and Find Full Text PDF

Nowadays, cost-effective, available, and flexible paper-based electronics play an essential role in the electronics industry. Herein, we present gold nanoparticles (AuNPs) as a potential raw material for gold inks in the future for such purposes. AuNPs in this research were synthesised using the ultrasonic spray pyrolysis (USP) technique from two precursors: gold (III) chloride tetrahydrate and gold (III) acetate.

View Article and Find Full Text PDF

This study describes the formation of cellulose based polyelectrolyte charge complexes on the surface of biodegradable polycaprolactone (PCL) thin films. Anionic sulphated cellulose (CS) and protonated cationic amino cellulose (AC) were used to form these complexes with a layer-by-layer coating technique. Both polyelectrolytes were analyzed by charge titration methods to elucidate their pH-value dependent protonation behavior.

View Article and Find Full Text PDF

Herein, colloidal dispersions of alkaline nanoparticles (NPs: CaCO and Mg(OH)) are stabilized by trimethylsilyl cellulose (TMSC) in hexamethyldisiloxane and employed to treat historical wood pulp paper by an effortless dip-coating technique. Both alkaline NPs exhibit high stability and no size and shape changes upon stabilization with the polymer, as shown by UV-vis spectroscopy and transmission electron microscopy. The long-term effect of NP/TMSC coatings is investigated in detail using accelerated aging.

View Article and Find Full Text PDF

The use of biomass to produce value-adding materials is a core objective of the circular economy, which has attracted great research interest in recent decades. In this context, we present here a simple dispersion-casting process for consolidation of cellulose nanofibrils (CNF), lignosulphonate (LS)-rich bio-waste and CaCl in composite membranes. The addition of CaCl to CNF and LS dispersions reduces the ζ potential, due to an electrostatic screening, which promotes the aggregation of CNF, increases its moisture content and promotes LS deposition on CNFs already in the dispersion phase.

View Article and Find Full Text PDF

In order to minimize the pollution caused by the reuse of textile dyes, technologies and materials have been developed that purify waste water in an efficient and cost-effective manner before it is discharged into a water body. In this context, the presented research investigates the potential of two types of fully cellulose-based membranes as adsorbents for cationic dyes used in the textile industry. The first type combines cellulose nanofibrils (CNFs) and carboxymethylated cellulose (CMC) using the solvent casting process and an esterification coupling reaction, while the second type uses commercial bacterial cellulose (BC) in a native and sodium periodate-treated form (BCox).

View Article and Find Full Text PDF

The optimized preparation of novel electrospun nanofibrous composites from cellulose acetate (CA) and ultra-high silica zeolites (UHSZ) are reported as a promising material for the adsorption of Volatile Organic Compound (VOCs). Two types of UHSZs, i.e.

View Article and Find Full Text PDF

Engineering functional biomaterials surfaces that resist biofilm formation triggered by unspecific protein adsorption is a key challenge, and these biosurfaces hold a huge potential in implant-associated infection. Herein, we report a water-based facile approach to install carboxylated-hyaluronic acid and sulfated-fucoidan on cationically tethered polydimethylsiloxane (PDMS) implant. We showed that these hydrophilic, charged, polysaccharide-based biosurfaces/biocoatings provide long-term stability, no adsorption of proteins (albumin and fibrinogen), similar to zwitterionic polymers, and enhanced resistance to plasma deposition and growth of pathogen.

View Article and Find Full Text PDF

The flavonoid rutin (RU) is a known antioxidant substance of plant origin. Its potential application in pharmaceutical and cosmetic fields is, however, limited, due to its low water solubility. This limitation can be overcome by polymerization of the phenolic RU into polyrutin (PR).

View Article and Find Full Text PDF

This work describes the preparation of spin-coated thin polymer films composed of cellulose (CE), ethyl cellulose (EC), and cellulose acetate (CA) in the form of bi- or mono-component coatings on sensors of a quartz crystal microbalance with dissipation monitoring (QCM-D). Depending on the composition and derivative, hydrophilicity can be varied resulting in materials with different surface properties. The surfaces of mono- and bi-component films were also analyzed by atomic force microscopy (AFM) and large differences in the morphologies were found comprising nano- to micrometer sized pores.

View Article and Find Full Text PDF

This work describes the interaction of the human blood plasma proteins albumin, fibrinogen, and γ-globulins with micro- and nanopatterned polymer interfaces. Protein adsorption studies were correlated with the fibrin clotting time of human blood plasma and with the growth of primary human pulmonary artery endothelial cells (hECs) on these patterns. It was observed that blends of polycaprolactone (PCL) and trimethylsilyl-protected cellulose form various thin-film patterns during spin coating, depending on the mass ratio of the polymers in the spinning solutions.

View Article and Find Full Text PDF

The fabrication of superadsorbent for dye adsorption is a hot research area at present. However, the development of low-cost and highly efficient superadsorbents against toxic textile dyes is still a big challenge. Here, we fabricated hydrophobic cellulose nanofiber aerogels from cellulose nanofibers through an eco-friendly silanization reaction in liquid phase, which is an extremely efficient, rapid, cheap, and environmentally friendly procedure.

View Article and Find Full Text PDF

Silicones are widely used medical materials that are also applied for tympanostomy tubes with a trending goal to functionalise the surface of the latter to enhance the healing of ear inflammations and other ear diseases, where such medical care is required. This study focuses on silicone surface treatment with various antimicrobial coatings. Polysaccharide coatings in the form of chitosan nanoparticles alone, or with an embedded drug mixture composed of amoxicillin/clavulanic acid (co-amoxiclav) were prepared and applied onto silicone material.

View Article and Find Full Text PDF

Nonspecific protein deposition on Lyocell fibers via a cationization step was explored by adsorption of two different N,N,N-trimethyl chitosan chlorides (TMCs). Both, the cationization and the subsequent protein deposition steps were performed and monitored in situ by evaluating the zeta potential using the streaming potential method. Both employed TMCs (degree of substitution with NMeCl groups: 0.

View Article and Find Full Text PDF