Publications by authors named "Matecka D"

The dopamine reuptake inhibitor GBR 12909 (1-{2-[bis(4-fluorophenyl)methoxy]ethyl}-4-(3-phenylpropyl)piperazine, 1) and its analogs have been developed as tools to test the hypothesis that selective dopamine transporter (DAT) inhibitors will be useful therapeutics for cocaine addiction. This 3D-QSAR study focuses on the effect of substitutions in the phenylpropyl region of 1. CoMFA and CoMSIA techniques were used to determine a predictive and stable model for the DAT/serotonin transporter (SERT) selectivity (represented by pK(i) (DAT/SERT)) of a set of flexible analogs of 1, most of which have eight rotatable bonds.

View Article and Find Full Text PDF

The development of methods to prevent HIV infection is critical to curbing the rising epidemic. Topical microbicides represent a potential new strategy for reduction of HIV transmission. The purpose of this article is to update and expand upon the nonclinical recommendations of a previously published document on the development of microbicides prepared by the International Working Group on Microbicides.

View Article and Find Full Text PDF

An investigation into the preparation of potential extended-release cocaine-abuse therapeutic agents afforded a series of compounds related to 1-[2-(diphenylmethoxy)ethyl]-4-(3-phenylpropyl)piperazine (1a) and 1-[2-[bis(4-fluorophenyl)methoxy]ethyl]-4-(3-phenylpropyl)piperazine (1b) (GBR 12935 and GBR 12909, respectively), which were designed, synthesized, and evaluated for their ability to bind to the dopamine transporter (DAT) and to inhibit the uptake of [(3)H]-labeled dopamine (DA). The addition of hydroxy and methoxy substituents to the benzene ring on the phenylpropyl moiety of 1a-1d resulted in a series of potent and selective ligands for the DAT (analogues 5-28). The hydroxyl groups were included to incorporate a medium-chain carboxylic acid ester into the molecules, to form oil-soluble prodrugs, amenable to "depot" injection techniques.

View Article and Find Full Text PDF

Major neurochemical effects of methamphetamine include release of dopamine (DA), serotonin (5-HT), and norepinephrine (NE) via a carrier-mediated exchange mechanism. Preclinical research supports the hypothesis that elevations of mesolimbic DA mediate the addictive and reinforcing effects of methamphetamine and amphetamine. This hypothesis has not been adequately tested in humans.

View Article and Find Full Text PDF

We tested the hypotheses that the carboxylate side chain of Asp147 of the mu opioid receptor interacts with the protonated nitrogen of naltrexone and morphine and that this interaction is important for pharmacological properties of the two compounds. Mutation of Asp147 to Ala or Asn substantially reduced the affinity of naltrexone and the affinity, potency and efficacy of morphine, while the Glu mutant had similar properties as the wildtype, indicating the significant role of the carboxylate group of Asp147 in receptor binding and activation. This role could be due to its direct interaction with ligands or involvement in interhelical interactions.

View Article and Find Full Text PDF

GBR12909 (GBR) is a high-affinity, selective, and long-acting inhibitor of dopamine (DA) uptake that produces a persistent and noncompetitive blockade of DA transporters and substantially reduces cocaine-induced increases in extracellular DA in the nucleus accumbens of rats. Prior studies showed that intravenous infusion of GBR to Rhesus monkeys selectively reduced (1 mg/kg) and eliminated (3 mg/kg) cocaine self-administration. This study tested the hypothesis that doses of GBR that reduce cocaine self-administration in nonhuman primates produce significant occupation of DA transporters.

View Article and Find Full Text PDF

Quantitative binding studies resolved two high-affinity [3H][D-Ala2,D-Leu5]enkephalin binding sites in rat brain membranes depleted of mu binding sites by pretreatment with the irreversible agent BIT. The two binding sites had lower (delta ncx-2, Ki = 96.6 nM) and higher (delta ncx-1, Ki = 1.

View Article and Find Full Text PDF

[125I]RTI-55 is a cocaine analog with high affinity for dopamine (DA) and serotonin (5-HT) transporters. Quantitative ligand binding studies revealed a novel high affinity [125I]RTI-55 binding site assayed under 5-HT transporter (SERT) conditions which has low affinity for almost all classic biogenic amine transporter ligands, including high affinity 5-HT transporter inhibitors such as paroxetine, but which retains high affinity for cocaine analogs. This site, termed SERT(site2) for its detection under 5-HT transporter conditions (not for an association with the SERT) occurs in monkey caudate, human caudate, and guinea pig caudate membranes, but not in rat caudate membranes.

View Article and Find Full Text PDF

Quantitative ligand binding studies resolved two subtypes of the delta opioid receptor, termed delta(ncx1) and delta(ncx2), in mouse brain membranes depleted of mu receptors by pretreatment with the irreversible ligand, BIT. The purpose of the present study was to compare the binding parameters, ligand-selectivity profile and pharmacological properties of the cloned mouse delta receptor (MDOR) stably expressed in a cell line to the delta(ncx) binding sites of mouse brain. [3H][D-Ala2,D-Leu5]enkephalin labeled a single binding site in membranes prepared from MDOR cells under several different assay conditions including BIT-pretreatment.

View Article and Find Full Text PDF

Dopaminergic agonists can decrease cocaine self-administration at doses that do not decrease food-maintained responding, a pre-clinical effect indicative of a potential treatment for human cocaine abuse. To assess whether similar effects could be obtained with medications currently used to treat substance abuse, phentermine and fenfluramine were given alone and in combination to rhesus monkeys responding under schedules of food and cocaine delivery. Phentermine decreased cocaine-maintained responding with no effect on food-maintained responding.

View Article and Find Full Text PDF

A new series of heteroaromatic GBR 12935 [1-[2-(diphenylmethoxy)ethyl]-4-(3-phenylpropyl)-piperazine] (I) and GBR 12909 [1-[2-[bis(4-fluorophenyl)methoxy]ethyl]-4-(3-phenylpropyl)piperazine] (2) analogs was synthesized and evaluated as dopamine transporter (DAT) ligands. Analogs 5-16, in which the benzene ring in the phenylpropyl side chain of the GBR molecule had been replaced with a thiophene, furan, or pyridine ring, exhibited high affinity and selectivity for the DAT vs serotonin transporter (SERT) and stimulated locomotor activity in rats in a manner similar to the parent compound 2. In cocaine and food self-administration studies in rhesus monkeys, both thiophene-containing (6 and 8) and pyridine-containing (14 and 16) derivatives displayed potency comparable to 2 in decreasing the cocaine-maintained responding at the doses tested (0.

View Article and Find Full Text PDF

The design, synthesis, and biological evaluation of compounds related to the dopamine (DA) uptake inhibitors: 1-[2-(diphenylmethoxy)ethyl]-4-(3-phenylpropyl)piperazine (1) and 1-[2-[bis-(4-fluorophenyl)methoxy]ethyl]-4-(3-phenylpropyl)piperazine (2) (GBR 12395 and GBR 12909, respectively), directed toward the development and identification of new ligands interacting with high potency and selectivity at the dopamine transporter (DAT) is reported. The substitution of the piperazine ring in the GBR structure with other diamine moieties resulted in the retention of the high affinity of new ligands for the DAT. Some of the modified GBR analogs (e.

View Article and Find Full Text PDF

Repeated administration of cocaine will cross-sensitize the locomotor response to a variety of psychomotor stimulants. The ability of cocaine to cross-sensitize the locomotor effects of other psychomotor stimulants provides information relevant to the pharmacological mechanisms underlying the sensitization process. The purpose of the current experiment was to investigate the ability of cocaine to cross-sensitize the locomotor effects of several dopamine uptake blockers with unique pharmacological profiles.

View Article and Find Full Text PDF

Alcohol-nontolerant (ANT) rats, produced by selective breeding for high sensitivity to motor-impairing effects of ethanol, have a point mutation in the cerebellar gamma-aminobutyric acid type A (GABAA) receptor alpha 6 subunit, which has been proposed to underlie enhanced sensitivity to benzodiazepine agonists as well. We compared ANT and alcohol-tolerant (AT) rats using behavioral and neurochemical methods to assess the significance of alpha 6- and non alpha 6-containing GABAA receptor subtypes. Motor performance in a tilting plane test was largely unaffected by a type I benzodiazepine receptor-preferring agonist, zolpidem [1-10 mg/kg, intraperitoneally (IP)], partial benzodiazepine agonists bretazenil and ZG-63 (both at 40 mg/kg, IP), and a novel broad-spectrum anticonvulsant loreclezole (40 mg/kg, IP) in both ANT and AT rats.

View Article and Find Full Text PDF

Prior work in our laboratory has identified putative subtypes of delta (delta cx-1, delta cx-2, delta ncx-1, delta ncx-2) and kappa 2 (kappa 2a and kappa 2b) receptors. Previous studies showed that chronic (three day) i.c.

View Article and Find Full Text PDF

Previous studies showed that the cocaine analog [125I]RTI-55 labels dopamine and serotonergic (5-HT) biogenic amine transporters (BATs) with high affinity. Here we characterized [125I]RTI-55 binding to membranes prepared from whole rat brain minus the caudate nuclei. Paroxetine (50 nM) was used to block [125I]RTI-55 binding to 5-HT transporter sites.

View Article and Find Full Text PDF