Publications by authors named "Matea Hajnic"

Covalent modifications of standard DNA/RNA nucleobases affect epigenetic regulation of gene expression by modulating interactions between nucleic acids and protein readers. We derive here the absolute binding free energies and analyze the binding modalities between key modified nucleobases 5-methylcytosine (5mC), 5-hydroxymethylcytosine (5hmC) and N-methyladenine (mA) and all non-prolyl/non-glycyl protein side chains using molecular dynamics simulations and umbrella sampling in both water and methanol, the latter mimicking the low dielectric environment at the dehydrated nucleic-acid/protein interfaces. We verify the derived affinities by comparing against a comprehensive set of high-resolution structures of nucleic-protein complexes involving 5mC.

View Article and Find Full Text PDF

A central intermediate in purine catabolism, the inosine nucleobase hypoxanthine is also one of the most abundant modified nucleobases in RNA and plays key roles in the regulation of gene expression and determination of cell fate. It is known that hypoxanthine acts as guanine when interacting with other nucleobases and base pairs most favorably with cytosine. However, its preferences when it comes to interactions with amino acids remain unknown.

View Article and Find Full Text PDF

Despite the paramount importance of protein-nucleic acid interactions in different cellular processes, our understanding of such interactions at the atomistic level remains incomplete. We have used molecular dynamics (MD) simulations and 15 μs of sampling time to study the behavior of amino acids and amino-acid sidechain analogs in aqueous solutions of different mimetics of naturally occurring nucleobases, including dimethylpyridine (DMP) and unsubstituted purine and pyrimidine rings. By using structural and energetic analysis, we have derived preference scales for the interaction of amino acids and their sidechain analogs with different nucleobase mimetics and have exhaustively compared them with each other.

View Article and Find Full Text PDF

Many critical processes in the cell involve direct binding between RNAs and proteins, making it imperative to fully understand the physicochemical principles behind such interactions at the atomistic level. Here, we use molecular dynamics simulations and 15 μs of sampling to study the behavior of amino acids and amino acid sidechain analogs in high-concentration aqueous solutions of standard RNA nucleobases. Structural and energetic analysis of simulated systems allows us to derive interaction propensity scales for different amino acid/nucleobase combinations.

View Article and Find Full Text PDF

Unlabelled: Although many enzymes are homooligomers composed of tightly bound subunits, it is often the case that smaller assemblies of such subunits, or even individual monomers, seem to have all the structural features necessary to independently conduct catalysis. In this study, we investigated the reasons justifying the necessity for the hexameric form of Escherichia coli purine nucleoside phosphorylase - a homohexamer composed of three linked dimers - since it appears that the dimer is the smallest unit capable of catalyzing the reaction, according to the currently accepted mechanism. Molecular modelling was employed to probe mutations at the dimer-dimer interface that would result in a dimeric enzyme form.

View Article and Find Full Text PDF