Background: End-stage renal disease is an irreversible status of kidney dysfunction that reduces both renal and non-renal drug clearance. Accumulation of uremic toxins seems to modify the activities of drug-metabolizing cytochrome P450 (CYP) enzymes. The aim of the present work was to refine gene expression analysis for efficient and accurate quantification of CYP mRNAs in patients' leukocytes.
View Article and Find Full Text PDFBackground: CYP2C19 is an important drug-metabolizing enzyme, responsible for metabolism of approximately 10% of the drugs on the market. Large inter-individual differences exist in metabolic activities, which are primarily attributed to genetic polymorphism of CYP2C19 gene. Conflicting results have been published about the role of CYP2C19 polymorphisms in metabolism of CYP2C19 substrates and clinical outcomes; thus, we aimed to investigate CYP2C19 genotype-phenotype associations, and we sought to elicit potential causes of discrepancies in the genotype-based prediction by incorporating the liver donors' demographic data, drug administration events and pathological conditions.
View Article and Find Full Text PDF