The dynamics and the decay processes of inner-shell excited atoms are of great interest in physics, chemistry, biology, and technology. The highly excited state decays very quickly through different channels, both radiative and non-radiative. It is therefore a long-standing goal to study such dynamics directly in the time domain.
View Article and Find Full Text PDFBased on wavefront sensor images an objective and quantitative method is presented for characterising cataract. By separating direct and scattered light in the focal plane of the microlenses, the new procedure is able to make two-dimensional maps of the spatial variation of scattering properties in the crystalline lens, and also provides a single figure descriptive for the whole eye. The developed evaluation algorithm successfully quantifies cataract, especially that of nuclear type.
View Article and Find Full Text PDFHigh-harmonic generation (HHG) in crystals offers a simple, affordable and easily accessible route to carrier-envelope phase (CEP) measurements, which scales favorably towards longer wavelengths. We present measurements of HHG in ZnO using few-cycle pulses at 3.1µm.
View Article and Find Full Text PDFThis paper presents a single-shot technique for measuring CEP. The Temporal dispersion based One-shot Ultrafast Carrier envelope phase Analysis method (TOUCAN) is an arbitrary repetition rate single-shot CEP drift measurement technique based on dispersive Fourier transformations and has been experimentally tested at 100 kHz. TOUCAN was validated by a direct comparison of decimated data with an independent traditional CEP drift measurement technique.
View Article and Find Full Text PDF