Living systems rely on coordinated molecular interactions, especially those related to gene expression and protein activity. The Unfolded Protein Response is a crucial mechanism in eukaryotic cells, activated when unfolded proteins exceed a critical threshold. It maintains cell homeostasis by enhancing protein folding, initiating quality control, and activating degradation pathways when damage is irreversible.
View Article and Find Full Text PDFNeurosurgical intervention is the best available treatment for selected patients with drug resistant epilepsy. For these patients, surgical planning requires biomarkers that delineate the epileptogenic zone, the brain area that is indispensable for the generation of seizures. Interictal spikes recorded with electrophysiological techniques are considered key biomarkers of epilepsy.
View Article and Find Full Text PDFThe study of RNA structure is fundamental to clarify the RNA molecular functioning. The flexible RNA nature, the huge number of expressed RNAs, and the variety of functions make it challenging to obtain a quantity of structural information comparable to what is already available for proteins. The prediction of RNA 3D structures is of particular relevance, to understand the fundamental features of the structure-function relationship, because the 3D structure drives the molecular interaction with DNA or protein complexes.
View Article and Find Full Text PDFObjective: Delineation of the seizure onset zone (SOZ) is required in children with drug resistant epilepsy (DRE) undergoing neurosurgery. Intracranial EEG (icEEG) serves as gold standard but has limitations. Here, we examine the utility of virtual implantation with electrical source imaging (ESI) on ictal scalp EEG for mapping the SOZ and predict surgical outcome.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
November 2021
Interictal epileptiform discharges (IEDs) serve as sensitive but not specific biomarkers of epilepsy that can delineate the epileptogenic zone (EZ) in patients with drug resistant epilepsy (DRE) undergoing surgery. Intracranial EEG (icEEG) studies have shown that IEDs propagate in time across large areas of the brain. The onset of this propagation is regarded as a more specific biomarker of epilepsy than areas of spread.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
November 2021
Studies on intracranial electroencephalography (icEEG) recordings of patients with drug resistant epilepsy (DRE) show that epilepsy biomarkers propagate in time across brain areas. Here, we propose a novel method that estimates critical features of these propagations for different epilepsy biomarkers (spikes, ripples, and fast ripples), and assess their common onset as a reliable biomarker of the epileptogenic zone (EZ). For each biomarker, an automatic algorithm ranked the icEEG electrodes according to their timing occurrence in propagations and finally dichotomized them as onset or spread.
View Article and Find Full Text PDFTranslocator protein 18 kDa [TSPO or peripheral-type benzodiazepine receptor (PBR)] was identified in the search of binding sites for benzodiazepine anxiolytic drugs in peripheral regions. In these areas, binding sites for TSPO ligands were recognized in steroid-producing tissues. TSPO plays an important role in many cellular functions, and its coding sequence is highly conserved across species.
View Article and Find Full Text PDFIssues connected with the reintegration of individuals affected by severe brain injury are numerous and complex. Extensive data indicate the effectiveness of treatments based on an holistic approach, which integrates medical interventions with social programmes and offers continuity, leading to the rapid achievement of independent living outcomes and return to work. In Italy, extensive resources are available for the clinical and rehabilitation management of individuals affected by traumatic brain injury in the acute and post-acute phase, but there are only a few organized services to support the reintegration phase.
View Article and Find Full Text PDFObjective: Intracranial electroencephalographic (icEEG) studies show that interictal ripples propagate across the brain of children with medically refractory epilepsy (MRE), and the onset of this propagation (ripple onset zone [ROZ]) estimates the epileptogenic zone. It is still unknown whether we can map this propagation noninvasively. The goal of this study is to map ripples (ripple zone [RZ]) and their propagation onset (ROZ) using high-density EEG (HD-EEG) and magnetoencephalography (MEG), and to estimate their prognostic value in pediatric epilepsy surgery.
View Article and Find Full Text PDFPositron emission tomography (PET) can be used to monitor in vivo translocator protein (TSPO) expression by using specific radioligands. Recently, several [11C]PK11195 analogues have been synthesized to improve binding stability and brain availability. [18F]VC701 was synthesized and validated in CD healthy rats by biodistribution and inhibition analysis.
View Article and Find Full Text PDFThe experimental experience is the result of combining cultural, clinical and scientific interest in rehabilitative, occupational and forensic mnedicine and in ergonomics. It deals with the rehabilitation and return at work of patients with physical disabilities caused by occupational trauma or disease. The programme described starts with a selection by INAIL and involves with an outpatient surgery inclusion.
View Article and Find Full Text PDFJ Hand Surg Am
December 2011
Chronic ischemia in the upper extremity is a challenging condition for both patients and surgeons. When ischemia reaches a critical level, tissue loss ensues, which results in necrosis of fingers at various levels. Amputation of necrotic digits, without addressing the etiology of the necrosis, often results in wound-healing problems and more proximal amputations.
View Article and Find Full Text PDFThe quinoline nucleus of the previously described 4-phenylquinoline-3-carboxamides NK(1) receptor ligands 7 has been transformed into either substituted or azole-(i.e., triazole or tetrazole) fused pyridine moieties of compounds 9 and 10, respectively, in order to obtain NK(1) receptor ligands showing lower molecular weight or higher hydrophilicity.
View Article and Find Full Text PDF(60)Cu and (64)Cu are useful radioisotopes for positron emission tomography (PET) radiopharmaceuticals and may be used for the preparation of promising agents for diagnosis and radiotherapy. In this study, the production and purification of (60/64)Cu starting from (60/64)Ni using a new automated system, namely Alceo, is described. A dynamic process for electrodeposition and dissolution of (60/64)Ni/(60/64)Cu was developed.
View Article and Find Full Text PDFMicroglia activation and neuroinflammation play a pivotal role in the pathogenesis of lysosomal storage disorders (LSD) affecting the central nervous system (CNS), which are amenable to treatment by hematopoietic stem cell transplantation (HSCT). HSCT efficacy relies on replacing the intra- and extra-vascular hematopoietic cell compartments, including CNS microglia, with a cell population expressing the functional enzyme. Non-invasive and quantitative assessment of microglia activation and of its reduction upon HSCT might allow for evaluation of disease evolution and response to treatment in LSD.
View Article and Find Full Text PDFThere are several lines of evidence, the majority indirect, suggesting that changes in serotonergic or dopaminergic neurotransmission may contribute to the pathogenesis of obsessive-compulsive disorder (OCD). We evaluated the co-occurrence of serotonergic and dopaminergic dysfunctions in OCD subjects, all drug-naive, with no co-morbidity and homogeneous for symptoms. Each subject underwent two positron emission tomography (PET) scans to measure in vivo both serotonin (5-HT(2A)) and dopamine (D(2)) receptor distribution.
View Article and Find Full Text PDFPotential receptor imaging agents based on Tc-99m for the in vivo visualization of the peripheral benzodiazepine receptor (PBR) have been designed on the basis of the information provided by the previously published structure-affinity relationship studies, which suggested the existence of tolerance to voluminous substituents in the receptor area interacting with 3-position of the quinoline nucleus of 2-quinolinecarboxamides 5. In the first step of the investigation, the stereoelectronic features of the above-indicated receptor area were also probed by means of 4-phenyl-3-[(1-piperazinyl)methyl]-2-quinolinecarboxamide derivatives bearing different substituents on the terminal piperazine nitrogen atom (compounds 6a-f). The structure-affinity relationship data confirmed the existence of a tolerance to bulky lipophilic substituents and stimulated the design of bifunctional ligands based on the 4-phenyl-3-[(1-piperazinyl)methyl]-2-quinolinecarboxamide moiety (compounds 6h,j,k,m).
View Article and Find Full Text PDFPurpose: Huntington's disease (HD) is a progressive neurodegenerative disorder, which is characterised by prominent neuronal cell loss in the basal ganglia with motor and cognitive disturbances. One of the most well-studied pharmacological models of HD is produced by local injection in the rat brain striatum of the excitotoxin quinolinic acid (QA), which produces many of the distinctive features of this human neurodegenerative disorder. Here, we report a detailed analysis, obtained both in vivo and in vitro of this pharmacological model of HD.
View Article and Find Full Text PDFStandards and des-methyl precursors of (R)- and (S)-thionisoxetine, potent and selective norepinephrine reuptake inhibitors, were synthesized and radiolabeled with carbon-11. Both enantiomers of the N-methyl-3-(2-thiomethylphenoxy)-3-phenylpropanamine and the 3-(2-thiomethylphenoxy)-3-phenylpropylamine were obtained via multi-step syntheses, while the radiosyntheses were carried out using [11C]CH3I. The radiochemical yields were 26%, decay corrected and the specific radioactivity ranging from 2 to 3 Ci/micromol.
View Article and Find Full Text PDFEmission tomography techniques and, in particular, positron emission tomography (PET) enable the in vivo study of several physiological and neurochemical variables in human subjects using methods originally developed for quantitative autoradiography. In particular, PET allows one to evaluate in human subjects: (a) the effect of specific neurochemical challenges on regional brain function at rest or under activation; (b) the activity of neurotransmitters and the regional expression of specific molecular targets during pathology including their modulation by drug treatment; (c) the kinetics of drug disposition and activity directly in the target organ. This is of primary interest in the field of biological psychiatry and in psychoactive drugs development, where it is particularly difficult to reproduce human diseases using animal models in view of the peculiarity of this field and the large heterogeneity of each psychiatric illness also inside the same clinical definition.
View Article and Find Full Text PDFThe previous exploration of the structure-affinity relationships concerning 4-phenyl-2-quinolinecarboxamide peripheral benzodiazepine receptor (PBR) ligands 6 showed as an interesting result the importance of the presence of a chlorine atom in the methylene carbon at position 3 of the quinoline nucleus. The subnanomolar PBR affinity shown by N-benzyl-3-chloromethyl-N-methyl-4-phenyl-2-quinolinecarboxamide (6b) suggested its chlorine atom to be replaced with other halogens in order to optimize the interaction of the quinolinecarboxamide derivatives with PBR and to develop suitable candidates for positron emission tomography (PET) or single photon emission computed tomography (SPECT) studies. The binding studies led to the discovery of fluoromethyl derivative 6a, which showed an IC50 value of 0.
View Article and Find Full Text PDF