Publications by authors named "Matarese G"

CD4FOXP3 regulatory T cells (T) suppress immune responses to tumors, and their accumulation in the tumor microenvironment (TME) correlates with poor clinical outcome in several cancers, including breast cancer (BC). However, the properties of intratumoral T remain largely unknown. Here, we found that a functionally distinct subpopulation of T, expressing the FOXP3 Exon2 splicing variants, is prominent in patients with hormone receptor-positive BC with poor prognosis.

View Article and Find Full Text PDF
Article Synopsis
  • ECP is a promising treatment for managing acute rejection in heart transplant patients by modulating the immune system, particularly through the action of regulatory T cells (Treg).
  • The study involved 14 heart transplant participants undergoing ECP therapy, assessing the effects on Treg frequency and their suppressive functions over time, alongside a control group.
  • Results indicate that ECP significantly boosts the number and function of suppressive Tregs, particularly those marked by the transcription factor FoxP3, which helps control immune responses and prevent graft rejection.
View Article and Find Full Text PDF

Background: Calorie restriction (CR) ameliorates preclinical models of multiple sclerosis (MS) via multiple mechanisms. These include decreased leptin, a proinflammatory adipokine, but mechanistic studies in humans are lacking. Tests of daily and intermittent CR (iCR) in people with MS (pwMS) showed improvements in fatigue and well-being measures.

View Article and Find Full Text PDF

The molecular mechanisms that govern differential T cell development from CD4CD25conventional T (Tconv) into CD4CD25 forkhead-box-P3 (FoxP3) inducible regulatory T (iTreg) cells remain unclear. Herein, we investigated the relative contribution of protein kinase A (PKA) in this process. Mechanistically, we found that PKA controlled the efficiency of human iTreg cell generation through the expression of different FoxP3 splicing variants containing or not the exon 2.

View Article and Find Full Text PDF

Immunometabolism has been demonstrated to control immune tolerance and the pathogenic events leading to autoimmunity. Compelling experimental evidence also suggests that intracellular metabolic programs influence differentiation, phenotype, proliferation, and effector functions of anti-inflammatory CD4+CD25+Foxp3+ regulatory T (Treg) cells. Indeed, alterations in intracellular metabolism associate with quantitative and qualitative impairments of Treg cells in several pathological conditions.

View Article and Find Full Text PDF

Extracellular vesicles (EVs) are released by all cells and contribute to cell-to-cell communication. The capacity of EVs to target specific cells and to efficiently deliver a composite profile of functional molecules have led researchers around the world to hypothesize their potential as therapeutics. While studies of EV treatment in animal models are numerous, their actual clinical benefit in humans has more slowly started to be tested.

View Article and Find Full Text PDF

Background And Objectives: The role of B cells in the pathogenic events leading to relapsing multiple sclerosis (R-MS) has only been recently elucidated. A pivotal step in defining this role has been provided by therapeutic efficacy of anti-CD20 monoclonal antibodies. Indeed, treatment with anti-CD20 can also alter number and function of other immune cells not directly expressing CD20 on their cell surface, whose activities can contribute to unknown aspects influencing therapeutic efficacy.

View Article and Find Full Text PDF

The binding of a cognate antigen to T cell receptor (TCR) complex triggers a series of intracellular events controlling T cell activation, proliferation, and differentiation. Upon TCR engagement, different negative regulatory feedback mechanisms are rapidly activated to counterbalance T cell activation, thus preventing excessive signal propagation and promoting the induction of immunological self-tolerance. Both positive and negative regulatory processes are tightly controlled to ensure the effective elimination of foreign antigens while limiting surrounding tissue damage and autoimmunity.

View Article and Find Full Text PDF

Tuberculosis is one of the deadliest infectious diseases worldwide. Mycobacterium tuberculosis has developed strategies not only to evade host immunity but also to manipulate it for its survival. We investigated whether Mycobacterium tuberculosis exploited the immunogenicity of Ag85B, one of its major secretory proteins, to redirect host antituberculosis immunity to its advantage.

View Article and Find Full Text PDF

Aims/hypothesis: Type 1 diabetes is an autoimmune disorder that is characterised by destruction of pancreatic beta cells by autoreactive T lymphocytes. Although islet autoantibodies (AAb) are an indicator of disease progression, specific immune biomarkers that can be used as target molecules to halt development of type 1 diabetes have not been discovered. Soluble immune checkpoint molecules (sICM) play a pivotal role in counteracting excessive lymphocyte responses, but their role in type 1 diabetes is unexplored.

View Article and Find Full Text PDF

Embryo implantation failure and spontaneous abortions represent the main causes of infertility in developed countries. Unfortunately, incomplete knowledge of the multiple factors involved in implantation and fetal development keeps the success rate of medically assisted procreation techniques relatively low. According to recent literature, cellular and molecular mechanisms of 'immunogenic tolerance' towards the embryo are crucial to establish an 'anti-inflammatory' state permissive of a healthy pregnancy.

View Article and Find Full Text PDF

Immunological events that precede the development of villous atrophy in celiac disease (CeD) are still not completely understood. We aimed to explore CeD-associated antibody production (anti-native gliadin (AGA), anti-deamidated gliadin (DGP) and anti-tissue transglutaminase (anti-tTG)) in infants at genetic risk for CeD from the Italian cohorts of the PREVENT-CD and Neocel projects, as well as the relationship between antibody production and systemic inflammation. HLA DQ2 and/or DQ8 infants from families with a CeD case were followed from birth.

View Article and Find Full Text PDF

Overnutrition could lead to loss of self-tolerance by impinging on immune regulation.

View Article and Find Full Text PDF

Background: In children with an allergy to cow's milk proteins (CMA), the altered composition of intestinal microbiota influences the immune tolerance to milk proteins (CMP). This study aims to investigate the effect of probiotics on the phenotype and activation status of peripheral basophils and lymphocytes in a pediatric CMA cohort.

Methods: CMA children underwent 45 days of treatment with Bifidobacteria.

View Article and Find Full Text PDF

Nutrition affects all physiological processes occurring in our body, including those related to the function of the immune system; indeed, metabolism has been closely associated with the differentiation and activity of both innate and adaptive immune cells. While excessive energy intake and adiposity have been demonstrated to cause systemic inflammation, several clinical and experimental evidence show that calorie restriction (CR), not leading to malnutrition, is able to delay aging and exert potent anti-inflammatory effects in different pathological conditions. This review provides an overview of the ability of different CR-related nutritional strategies to control autoimmune, cardiovascular, and infectious diseases, as tested by preclinical studies and human clinical trials, with a specific focus on the immunological aspects of these interventions.

View Article and Find Full Text PDF

Neurodegenerative and inflammatory processes influence the clinical course of multiple sclerosis (MS). The β-site amyloid precursor protein cleaving enzyme 1 (BACE1) has been associated with cognitive dysfunction, amyloid deposition and neuroinflammation in Alzheimer's disease. We explored in a group of 50 patients with relapsing-remitting MS the association between the cerebrospinal fluid (CSF) levels of BACE1, clinical characteristics at the time of diagnosis and prospective disability after three-years follow-up.

View Article and Find Full Text PDF

Background: Osteopontin, an extracellular matrix protein involved in bone remodeling, tissue repair and inflammation, has previously been associated with increased inflammation and neurodegeneration in multiple sclerosis (MS), promoting a worse disease course. Osteopontin is also likely involved in acute MS relapses.

Methods: In 47 patients with relapsing-remitting MS, we explored the correlation between the time elapsed between the last clinical relapse and lumbar puncture, and the cerebrospinal fluid (CSF) levels of osteopontin and a group of inflammatory cytokines and adipokines such as resistin, plasminogen activator inhibitor-1, osteoprotegerin, interleukin (IL)-1β, IL-2, IL-6 and IL-1 receptor antagonist (IL-1ra).

View Article and Find Full Text PDF

Context: Poor glucose control has been associated with increased mortality in COVID-19 patients with type 1 diabetes (T1D).

Objective: This work aimed to assess the effect of prevaccination glucose control on antibody response to the SARS-CoV-2 vaccine BNT162b2 in T1D.

Methods: We studied 26 patients with T1D scheduled to receive 2 doses, 21 days apart, of BNT162b2, followed prospectively for 6 months with regular evaluation of SARS-CoV-2 antibodies and glucose control.

View Article and Find Full Text PDF
Article Synopsis
  • TRAP1 is a molecular chaperone that plays a dual role in cancer, acting as both an oncogene and an oncosuppressor depending on the type of cancer and its metabolism.
  • TRAP1 interacts with mitochondrial complex III, affecting respiration and allowing cancer cells to sustain energy production when glucose is low.
  • The study highlights TRAP1's potential as a therapeutic target in ovarian cancer, especially since its levels correlate with patient survival and response to treatment.
View Article and Find Full Text PDF

Compelling experimental evidence links immunity and metabolism. In this perspective, we propose forkhead-box-P3 (FoxP3)CD4CD25 regulatory T (Treg) cells as key metabolic sensors controlling the immunological state in response to their intrinsic capacity to perceive nutritional changes. Treg cell high anabolic state in vivo, residency in metabolically crucial districts, and recirculation between lymphoid and non-lymphoid sites enable them to recognize the metabolic cues and adapt their intracellular metabolism and anti-inflammatory function at the paracrine and systemic levels.

View Article and Find Full Text PDF

Background: Dried blood spot (DBS) testing is a well-known method of bio-sampling by which blood samples are blotted and dried on filter paper. The dried samples can then be analyzed by several techniques such as DNA amplification and HPLC. We have developed a non-invasive sampling followed by an alternative protocol for genomic DNA extraction from a drop of blood adsorbed on paper support.

View Article and Find Full Text PDF

Aims/hypothesis: We assessed the levels of blood circulating immune checkpoint molecules (ICMs) at diagnosis of type 1 diabetes, and determined their association with the risk of developing an additional autoimmune disorder over time.

Methods: Children with new-onset type 1 diabetes (n = 143), without biological and/or clinical signs of additional autoimmune disorders, and healthy children (n = 75) were enrolled, and blood circulating levels of 14 ICMs were measured. The children with type 1 diabetes were divided into two groups on the basis of the development of an additional autoimmune disease in the 5 years after diabetes onset.

View Article and Find Full Text PDF