In this research, we develop ordinal decision-tree-based ensemble approaches in which an objective-based information gain measure is used to select the classifying attributes. We demonstrate the applicability of the approaches using AdaBoost and random forest algorithms for the task of classifying the regional daily growth factor of the spread of an epidemic based on a variety of explanatory factors. In such an application, some of the potential classification errors could have critical consequences.
View Article and Find Full Text PDF