High-harmonic generation (HHG) is a nonlinear process in which a material sample is irradiated by intense laser pulses, causing the emission of high harmonics of incident light. HHG has historically been explained by theories employing a classical electromagnetic field, successfully capturing its spectral and temporal characteristics. However, recent research indicates that quantum-optical effects naturally exist or can be artificially induced in HHG, such as entanglement between emitted harmonics.
View Article and Find Full Text PDFThe motion of laser-driven electrons quivers with an average energy termed pondermotive energy. We explore electron dynamics driven by bright squeezed vacuum (BSV), finding that BSV induces width oscillations, akin to electron quivering in laser light, with an equivalent ponderomotive energy. We identify closed and open trajectories of the electronic width that are associated with high harmonic generation and above-threshold ionization, respectively, similarly to trajectories of the electron position when its motion is driven by coherent light.
View Article and Find Full Text PDFSymmetries are ubiquitous in condensed matter physics, playing an important role in the appearance of different phases of matter. Nonlinear light matter interactions serve as a coherent probe for resolving symmetries and symmetry breaking via their link to selection rules of the interaction. In the extreme nonlinear regime, high harmonic generation (HHG) spectroscopy offers a unique spectroscopic approach to study this link, probing the crystal spatial properties with high sensitivity while opening new paths for selection rules in the XUV regime.
View Article and Find Full Text PDFSelection rules are often considered a hallmark of symmetry. Here, we employ symmetry-breaking degrees of freedom as synthetic dimensions to demonstrate that symmetry-broken systems systematically exhibit a specific class of symmetries and selection rules. These selection rules constrain the scaling of a system's observables (non-perturbatively) as it transitions from symmetric to symmetry-broken.
View Article and Find Full Text PDF