Deep learning methods for digital pathology analysis are an effective way to address multiple clinical questions, from diagnosis to prediction of treatment outcomes. These methods have also been used to predict gene mutations from pathology images, but no comprehensive evaluation of their potential for extracting molecular features from histology slides has yet been performed. We show that HE2RNA, a model based on the integration of multiple data modes, can be trained to systematically predict RNA-Seq profiles from whole-slide images alone, without expert annotation.
View Article and Find Full Text PDFJ Thorac Oncol
June 2020
Introduction: Histologic subtypes of malignant pleural mesothelioma are a major prognostic indicator and decision denominator for all therapeutic strategies. In an ambiguous case, a rare transitional mesothelioma (TM) pattern may be diagnosed by pathologists either as epithelioid mesothelioma (EM), biphasic mesothelioma (BM), or sarcomatoid mesothelioma (SM). This study aimed to better characterize the TM subtype from a histological, immunohistochemical, and molecular standpoint.
View Article and Find Full Text PDFBackground And Aims: Standardized and robust risk-stratification systems for patients with hepatocellular carcinoma (HCC) are required to improve therapeutic strategies and investigate the benefits of adjuvant systemic therapies after curative resection/ablation.
Approach And Results: In this study, we used two deep-learning algorithms based on whole-slide digitized histological slides (whole-slide imaging; WSI) to build models for predicting survival of patients with HCC treated by surgical resection. Two independent series were investigated: a discovery set (Henri Mondor Hospital, n = 194) used to develop our algorithms and an independent validation set (The Cancer Genome Atlas [TCGA], n = 328).
Malignant mesothelioma (MM) is an aggressive cancer primarily diagnosed on the basis of histological criteria. The 2015 World Health Organization classification subdivides mesothelioma tumors into three histological types: epithelioid, biphasic and sarcomatoid MM. MM is a highly complex and heterogeneous disease, rendering its diagnosis and histological typing difficult and leading to suboptimal patient care and decisions regarding treatment modalities.
View Article and Find Full Text PDFIn multiple myeloma, next-generation sequencing (NGS) has expanded our knowledge of genomic lesions, and highlighted a dynamic and heterogeneous composition of the tumor. Here we used NGS to characterize the genomic landscape of 418 multiple myeloma cases at diagnosis and correlate this with prognosis and classification. Translocations and copy number abnormalities (CNAs) had a preponderant contribution over gene mutations in defining the genotype and prognosis of each case.
View Article and Find Full Text PDFHematology Am Soc Hematol Educ Program
December 2017
In recent years, the composite molecular architecture in acute myeloid leukemia (AML) has been mapped out. We now have a clearer understanding of the key genetic determinants, the major genetic interactions, and the broad order in which these mutations occur. The next impending challenge is to discern how these recent genomic discoveries define disease biology as well as how to use molecular markers to deliver patient-tailored clinical decision support.
View Article and Find Full Text PDFMutations in the RNA splicing gene are found in >80% of patients with myelodysplastic syndrome with ring sideroblasts (MDS-RS). We investigated the origin of mutations within the bone marrow hematopoietic stem and progenitor cell compartments in patients with MDS-RS. Screening for recurrently mutated genes in the mononuclear cell fraction revealed mutations in in 39 of 40 cases (97.
View Article and Find Full Text PDFIntroduction: HER2-positive breast cancer (BC) is a heterogeneous group of aggressive breast cancers, the prognosis of which has greatly improved since the introduction of treatments targeting HER2. However, these tumors may display intrinsic or acquired resistance to treatment, and classifiers of HER2-positive tumors are required to improve the prediction of prognosis and to develop novel therapeutic interventions.
Methods: We analyzed 2893 primary human breast cancer samples from 21 publicly available datasets and developed a six-metagene signature on a training set of 448 HER2-positive BC.
Background: Methylation of high-density CpG regions known as CpG Islands (CGIs) has been widely described as a mechanism associated with gene expression regulation. Aberrant promoter methylation is considered a hallmark of cancer involved in silencing of tumor suppressor genes and activation of oncogenes. However, recent studies have also challenged the simple model of gene expression control by promoter methylation in cancer, and the precise mechanism of and role played by changes in DNA methylation in carcinogenesis remains elusive.
View Article and Find Full Text PDFBackground: The CpG island methylator phenotype (CIMP) was first characterized in colorectal cancer but since has been extensively studied in several other tumor types such as breast, bladder, lung, and gastric. CIMP is of clinical importance as it has been reported to be associated with prognosis or response to treatment. However, the identification of a universal molecular basis to define CIMP across tumors has remained elusive.
View Article and Find Full Text PDFIntroduction: Epigenetic modifications such as aberrant DNA methylation has long been associated with tumorogenesis. Little is known, however, about how these modifications appear in cancer progression. Comparing the methylome of breast carcinomas and locoregional evolutions could shed light on this process.
View Article and Find Full Text PDF