Herein, the synthesis of amylose-coated, temperature-responsive poly(N-vinylcaprolactam) (VCL)-based copolymer microgels by enzyme-catalyzed grafting-from polymerization with phosphorylase b from rabbit muscle is reported. The phosphorylase is able to recognize the oligosaccharide maltoheptaose as primer and attach glucose units from the monomer glucose-1-phosphate to it, thereby forming amylose chains while releasing inorganic phosphate. Therefore, to enable the phosphorylase-catalyzed grafting-from polymerization of glucose-1-phosphate from the PVCL-based microgels, the maltoheptaose primer is covalently attached to the microgel in the first synthesis step.
View Article and Find Full Text PDFAngew Chem Weinheim Bergstr Ger
October 2015
Chiral macromolecules have been widely used as synthetic pockets to mimic natural enzymes and promote asymmetric reactions. An achiral host, cucurbit[8]uril (CB[8]), was used for an asymmetric Lewis acid catalyzed Diels-Alder reaction. We achieved a remarkable increase in enantioselectivity and a large rate acceleration in the presence of the nanoreactor by using an amino acid as the chiral source.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
October 2015
Chiral macromolecules have been widely used as synthetic pockets to mimic natural enzymes and promote asymmetric reactions. An achiral host, cucurbit[8]uril (CB[8]), was used for an asymmetric Lewis acid catalyzed Diels-Alder reaction. We achieved a remarkable increase in enantioselectivity and a large rate acceleration in the presence of the nanoreactor by using an amino acid as the chiral source.
View Article and Find Full Text PDF