Studies in genetically modified mice establish that essential roles of endogenous neuromedin U (NMU) are anorexigenic function and metabolic regulation, indicating that NMU is expected to be a potential target for anti-obesity agents. However, in central administration experiments in rats, inconsistent results have been obtained, and the essential role of NMU energy metabolism in rats remain unclear. This study aims to elucidate the role of endogenous NMU in rats.
View Article and Find Full Text PDFMonoclonal antibodies have been applied in a wide range of biological and medical studies since the advent of cell fusion technology. Although cell fusion techniques have been improved by using myelomas and reagents, researchers still find it difficult to produce monoclonal antibodies because of the long protocols, high costs, and low efficiency of obtaining hybridomas. To solve these problems, we first developed an iliac lymph node method in 1995 using rats.
View Article and Find Full Text PDFAlport syndrome is an inherited chronic human kidney disease, characterized by glomerular basement membrane abnormalities. This disease is caused by mutations in COL4A3, COL4A4, or COL4A5 gene. The knockout mice for Col4α3, Col4α4, and Col4α5 are developed and well characterized for the study of Alport syndrome.
View Article and Find Full Text PDFRecent advances in the CRISPR/Cas9 system have demonstrated it to be an efficient gene-editing technology for various organisms. Laboratory mice and rats are widely used as common models of human diseases; however, the current standard method to create genome-engineered animals is laborious and involves three major steps: isolation of zygotes from females, ex vivo micromanipulation of zygotes, and implantation into pseudopregnant females. To circumvent this, we recently developed a novel method named Genome-editing via Oviductal Nucleic Acids Delivery (GONAD).
View Article and Find Full Text PDFRenal fibrosis is accompanied by the progression of chronic kidney disease. Despite a number of past and ongoing studies, our understanding of the underlying mechanisms remains elusive. Here we explored the progression of renal fibrosis using a mouse model of unilateral ureter obstruction.
View Article and Find Full Text PDFBackground: Recent progress in development of the CRISPR/Cas9 system has been shown to be an efficient gene-editing technology in various organisms. We recently developed a novel method called Genome-editing via Oviductal Nucleic Acids Delivery (GONAD) in mice; a novel in vivo genome editing system that does not require ex vivo handling of embryos, and this technology is newly developed and renamed as "improved GONAD" (i-GONAD). However, this technology has been limited only to mice.
View Article and Find Full Text PDF