Publications by authors named "Masuma Akter Brishti"

Diabetes alters the function of ion channels responsible for regulating arterial smooth muscle membrane potential, resulting in vasoconstriction. Our prior research demonstrated an elevation of TMEM16A in diabetic arteries. Here, we explored the mechanisms involved in Transmembrane protein 16A ( gene expression.

View Article and Find Full Text PDF

Soluble cell adhesion molecules (sCAMs) are secreted ectodomain fragments of surface adhesion molecules, ICAM1 and VCAM1. sCAMs have diverse immune functions beyond their primary function, impacting immune cell recruitment and activation. Elevated sVCAM1 levels have been found to be associated with poor cardiovascular disease (CVD) outcomes, supporting VCAM1's role as a potential diagnostic marker and therapeutic target.

View Article and Find Full Text PDF

Blood-brain-barrier permeability is regulated by endothelial junctional proteins and is vital in limiting access to and from the blood to the CNS. When stressed, several cells, including endothelial cells, can release nucleotides like ATP and ADP that signal through purinergic receptors on these cells to disrupt BBB permeability. While this process is primarily protective, unrestricted, uncontrolled barrier disruption during injury or inflammation can lead to serious neurological consequences.

View Article and Find Full Text PDF

Rab GTPases, the largest family of small GTPases, are ubiquitously expressed proteins that control various aspects of cellular function, from cell survival to exocytosis. Rabs cycle between the GDP-bound inactive form and the GTP-bound active form. When activated, specific Rab GTPase-positive vesicles mediate cellular networks involved in intracellular trafficking, recycling, and/or exocytosis of cargo proteins.

View Article and Find Full Text PDF