Publications by authors named "Masuhiro Yoshitake"

Tuberculosis (TB), caused by Mycobacterium tuberculosis (MTB), is the leading cause of death from an infectious disease globally. The widespread and ever-increasing resistance to TB drugs is reducing the effectiveness of treatment and jeopardizing TB control. New effective drugs with acceptable safety profiles are needed to turn the tide.

View Article and Find Full Text PDF

Background: The mechanisms underlying the ability of cilostazol to improve walking distance in patients with intermittent claudication (IC) are not fully understood, but may be related to its phosphodiesterase type 3 (PDE3) and adenosine uptake inhibition. In the present study the effect of cilostazol on blood flow and interstitial adenosine concentration was compared with that of the PDE3 inhibitor, milrinone, and the adenosine uptake inhibitor, draflazine.

Methods And Results: Rabbit gastrocnemius muscle blood flow was measured under resting, contracting and ischemic conditions.

View Article and Find Full Text PDF

Recent progress in the understanding of thrombus formation has suggested an important role for glycoprotein (GP) VI in this process. To clarify the exact role in detail, it is necessary to use specific, high affinity inhibitory antibodies. However, possibly due to the conserved structure of GPVI among species, it has been difficult to obtain potent antibodies.

View Article and Find Full Text PDF

Platelet glycoprotein VI (GPVI) is now considered to be a major player in platelet-collagen adhesive interactions leading to thrombus formation. GPVI blockade, or its depletion, has been shown in mice to result in complete protection against arterial thrombosis, without significant prolongation of bleeding time. GPVI may therefore represent a useful antithrombotic target.

View Article and Find Full Text PDF

Purpose: To determine the antiplatelet effect of cilostazol (Pletal) and its interaction with dipyridamole in in vitro and in vivo rabbit models, and to see if it can be dissociated from bleeding time prolongation.

Methods: In vitro collagen-induced platelet aggregation was measured by an impedance-based aggregometer. The in vivo antithrombotic effect was evaluated in a rabbit carotid artery cyclic flow reduction (CFR) model, in which repetitive thrombosis was induced by mechanical injuries of the artery and stenosis.

View Article and Find Full Text PDF

It has been previously shown that cilostazol (Pletal), a drug for relief of symptoms of intermittent claudication, potently inhibits cyclic nucleotide phosphodiesterase type 3 (PDE3) and moderately inhibits adenosine uptake. It elevates extracellular adenosine concentration, by inhibiting adenosine uptake, and combines with PDE3 inhibition to augment inhibition of platelet aggregation and vasodilation while attenuating positive chronotropic and inotropic effects on the heart. In the present study, we tested the hypothesis that cilostazol combined with a more potent adenosine uptake inhibitor, dipyridamole, synergistically inhibited platelet aggregation in human blood.

View Article and Find Full Text PDF

Cilostazol (CLZ) was originally developed as a selective inhibitor of cyclic nucleotide phosphodiesterase 3 (PDE3). PDE3 inhibition in platelets and vascular smooth muscle cells (VSMC) was expected to provide an antiplatelet effect and vasodilation. Recent preclinical studies have demonstrated that CLZ also possesses the ability to inhibit adenosine uptake by various cells, a property that distinguishes CLZ from other PDE3 inhibitors, such as milrinone.

View Article and Find Full Text PDF

Glycoprotein (GP) VI, a collagen receptor, plays a important role in collagen-mediated platelet aggregation and adhesion. To date, GPVI expression has been found only in platelets and megakaryocytes. In the present studies, we have demonstrated that GPVI was also expressed in cultured human umbilical vein endothelial cells (HUVEC) at both transcript and protein levels.

View Article and Find Full Text PDF

We investigated the basis for the difference in the cardiotonic effects of the PDE3 inhibitors cilostazol and milrinone in the rabbit heart. Cilostazol displayed greater selectivity than milrinone for inhibition of cAMP-PDE activity in microsomal vs cytosolic fractions from rabbit heart. This difference was due to the inhibition of significantly less cytosolic cAMP-PDE activity by cilostazol compared to milrinone.

View Article and Find Full Text PDF

Glycoprotein (GP) VI, a collagen receptor, plays an important role in collagen-mediated platelet aggregation and adhesion. To date, GPVI expression has been found only in platelets and megakaryocytes. In the present studies, we have demonstrated that GPVI was also expressed in cultured human umbilical vein endothelial cells (HUVEC) at both transcript and protein levels.

View Article and Find Full Text PDF

Cilostazol, a potent phosphodiesterase 3 inhibitor and anti-thrombotic agent, was recently shown to inhibit adenosine uptake into cardiac myocytes and vascular cells. In the present studies, cilostazol inhibited [ H]-adenosine uptake in both platelets and erythrocytes with a median inhibitory concentration (IC ) of 7 micro M. Next collagen-induced platelet aggregation was studied and it was found that adenosine (1 micro M ), having no effect by itself, shifted the IC of cilostazol from 2.

View Article and Find Full Text PDF