Publications by authors named "Masud Khan"

Background: Bone morphogenetic protein-2 () has a high potential to induce bone tissue formation in skeletal muscles. We developed a bone induction system in skeletal muscles using the gene through in vivo electroporation. Natural bone tissues with skeletal muscles can be considered potential candidates for biomaterials.

View Article and Find Full Text PDF

The receptor activator of NF-κB ligand (RANKL)-binding peptide is known to accelerate bone morphogenetic protein (BMP)-2-induced bone formation. Cholesterol-bearing pullulan (CHP)-OA nanogel-crosslinked PEG gel (CHP-OA nanogel-hydrogel) was shown to release the RANKL-binding peptide sustainably; however, an appropriate scaffold for peptide-accelerated bone formation is not determined yet. This study compares the osteoconductivity of CHP-OA hydrogel and another CHP nanogel, CHP-A nanogel-crosslinked PEG gel (CHP-A nanogel-hydrogel), in the bone formation induced by BMP-2 and the peptide.

View Article and Find Full Text PDF

Here, we tested the hypothesis that tensile and compressive stresses generated in the alveolar bone proper regulate site-specific cellular and functional changes in osteoclasts and osteoblasts. Thirty-two 13-week-old male mice were randomly divided into four groups: two experimental groups with vertical loading obliquely from the palatal side to the buccal side of the maxillary molar (0.9 N) 30 min per day for 8 or 15 days and unloaded controls (n = 8).

View Article and Find Full Text PDF

The receptor activator of NF-κB ligand (RANKL)-binding peptide, OP3-4, is known to stimulate bone morphogenetic protein (BMP)-2-induced bone formation, but peptides tend to aggregate and lose their bioactivity. Cholesterol-bearing pullulan (CHP) nanogel scaffold has been shown to prevent aggregation of peptides and to allow their sustained release and activity; however, the appropriate design of CHP nanogels to conduct local bone formation needs to be developed. In the present study, we investigated the osteoconductive capacity of a newly synthesized CHP nanogel, CHPA using OP3-4 and BMP-2.

View Article and Find Full Text PDF

Tetracycline is used as a fluorescent reagent to measure bone formation activity in bone histomorphometric analyses. However, there is a possibility to lead a different conclusion when it is used in a bacteria-infected murine model since the tetracycline is considered to work as an antibiotic reagent. There are non-antibiotic fluorescent reagents such as alizarin and calcein for measuring bone formation activity.

View Article and Find Full Text PDF

Background: Atrial fibrillation (AF) and Venous Thromboembolism (VTE) are significant causes of morbidity and mortality. Direct oral anticoagulants (DOACs) are as effective as vitamin K antagonists (VKAs) with a propensity to cause less major bleeding. This study aimed to assess the safety and effectiveness of rivaroxaban in routine clinical practice in a large tertiary referral center in Saudi Arabia.

View Article and Find Full Text PDF

Receptor activator of NF-κB ligand (RANKL)-binding peptides inhibit bone resorption and were recently shown to activate bone formation. The stimulatory mechanism underlying bone formation associated with these peptides was explained as RANKL-reverse signaling, wherein RANKL molecules on osteoblasts work as receptors to stimulate osteoblast differentiation. However, why RANKL-binding peptides stimulate osteoblast differentiation while osteoprotegerin (OPG), which is well known to bind to RANKL, cannot activate osteoblast differentiation has remained unclear.

View Article and Find Full Text PDF

Musculoskeletal diseases and disorders, including osteoporosis and rheumatoid arthritis are diseases that threaten a healthy life expectancy, and in order to extend the healthy life expectancy of elderly people, it is important to prevent bone and joint diseases and disorders. We previously reported that alymphoplasia (aly/aly) mice, which have a loss-of-function mutation in the Nik gene involved in the processing of p100 to p52 in the alternative NF-κB pathway, show mild osteopetrosis with a decrease in the osteoclast number, suggesting that the alternative NF-κB pathway is a potential drug target for ameliorating bone diseases. Recently, the novel NF-κB-inducing kinase (NIK)-specific inhibitor compound 33 (Cpd33) was developed, and we examined its effect on osteoclastic bone resorption in vitro and in vivo.

View Article and Find Full Text PDF

Skeletal tissue homeostasis is maintained via the balance of osteoclastic bone resorption and osteoblastic bone formation. Autophagy and apoptosis are essential for the maintenance of homeostasis and normal development in cells and tissues. We found that Bax-interacting factor 1 (Bif-1/Endophillin B1/SH3GLB1), involving in autophagy and apoptosis, was upregulated during osteoclastogenesis.

View Article and Find Full Text PDF

We recently found that the membrane-bound receptor activator of NF-κB ligand (RANKL) on osteoblasts works as a receptor to stimulate osteoblast differentiation, however, the reason why the RANKL-binding molecules stimulate osteoblast differentiation has not been well clarified. Since the induction of cell-surface receptor clustering is known to lead to cell activation, we hypothesized that the induction of membrane-RANKL clustering on osteoblasts might stimulate osteoblast differentiation. Immunoblotting showed that the amount of RANKL on the membrane was increased by the RANKL-binding peptide OP3-4, but not by osteoprotegerin (OPG), the other RANKL-binding molecule, in Gfp-Rankl-transfected ST2 cells.

View Article and Find Full Text PDF

Receptor activator of nuclear factor-kappa B (RANK) ligand (RANKL) binds RANK on the surface of osteoclast precursors to trigger osteoclastogenesis. Recent studies have indicated that osteocytic RANKL has an important role in osteoclastogenesis during bone remodelling; however, the role of osteoblastic RANKL remains unclear. Here we show that vesicular RANK, which is secreted from the maturing osteoclasts, binds osteoblastic RANKL and promotes bone formation by triggering RANKL reverse signalling, which activates Runt-related transcription factor 2 (Runx2).

View Article and Find Full Text PDF

Excessive exposure to glucocorticoids causes osteoporosis in children and adults. Occlusal disharmony is known to induce an increase in serum corticosteroid levels in murine models, but the influence of occlusal disharmony-induced stress on the bone mass during the growth period has not yet been clarified. The purpose of this study was to investigate whether occlusal disharmony-induced stress decreases bone mass.

View Article and Find Full Text PDF

We investigated the biological activity of W9, a bone resorption inhibitor peptide, using NanoClik nanoparticles as an injectable carrier, where acryloyl group-modified cholesterol-bearing pullulan (CHPOA) nanogels were crosslinked by pentaerythritol tetra (mercaptoethyl) polyoxyethylene. Thirty 5-week-old male C57BL/6J mice were fed a low calcium diet and received once-daily subcutaneous injections of the carrier alone, W9 24 mg/kg/day alone, W9 24 mg/kg/day incorporated in cholesterol bearing pullulan (CHP) nanogels, or W9 (8 and 24 mg/kg/day) incorporated in NanoClik nanoparticles for 4 days (n=5). Mice that received a normal calcium diet with NanoClik nanoparticle injections without W9 were used as a control group.

View Article and Find Full Text PDF

To date, parathyroid hormone is the only clinically available bone anabolic drug. The major difficulty in the development of such drugs is the lack of clarification of the mechanisms regulating osteoblast differentiation and bone formation. Here, we report a peptide (W9) known to abrogate osteoclast differentiation in vivo via blocking receptor activator of nuclear factor-κB ligand (RANKL)-RANK signaling that we surprisingly found exhibits a bone anabolic effect in vivo.

View Article and Find Full Text PDF

Nuclear factor-κB (NF-κB) is constitutively activated in many cancers, including oral squamous cell carcinoma (OSCC), and is involved in the invasive characteristics of OSCC, such as growth, antiapoptotic activity and protease production. However, the cellular mechanism underlying NF-κB's promotion of bone invasion by OSCC is unclear. Therefore, we investigated the role of NF-κB in bone invasion by OSCC in vivo.

View Article and Find Full Text PDF

Bone degenerative diseases, including osteoporosis, impair the fine balance between osteoclast bone resorption and osteoblast bone formation. Single-agent therapy for anabolic and anticatabolic effects is attractive as a drug target to ameliorate such conditions. Inhibition of nuclear factor (NF)-κB reduces the osteoclast bone resorption.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_session450njd3i3tr5sbgdurr55r4hn0gbl2dg): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once