Publications by authors named "Mastikhin I"

In this work, we expand on past portable magnetic resonance flow methods and propose a novel method for characterizing circular (laminar) Couette flow of non-Newtonian fluids. Symmetry of the flow system combined with a constant magnetic field gradient leads to phase interference, affecting the signal magnitude, and net phase cancellation when averaging across the excited slice, preventing the use of phase-sensitive methods. Therefore, we utilize the dependence of signal magnitude at variable echo times and shear rates to characterize rheological properties.

View Article and Find Full Text PDF

Dynamic mechanical analysis (DMA) is an umbrella term for a variety of rheological experiments in which the response of a sample subjected to an oscillatory force is measured to characterize its dynamic properties. In this work, we present a method for DMA that employs a small unilateral three magnet array with an extended constant gradient to measure the velocity of a vibrating sample. By orienting the vibrations in the direction of the gradient, we use the motion-sensitized phase accumulation to determine the velocity.

View Article and Find Full Text PDF
Article Synopsis
  • Sea water ice contains brine-filled pockets within a solid ice matrix, creating a complex pore structure.
  • A portable unilateral NMR instrument was used to study brine inclusions in stationary seawater ice and seawater spray ice at temperatures between -6 °C and -16 °C.
  • The findings indicate that brine content and temperature distribution vary based on the type of ice and its orientation, with horizontal spray ice showing a higher brine content than vertical spray ice.
View Article and Find Full Text PDF

Sea spray icing is a common hazard for vessels and offshore structures in cold climates. In this paper, quantitative 3D MRI and T - T mapping of the formation of sea spray ice were performed. Three different freezing regimes were employed.

View Article and Find Full Text PDF

The pressure variations experienced by a liquid flowing through a pipe constriction can, in some cases, result in the formation of a bubble cloud (i.e., hydrodynamic cavitation).

View Article and Find Full Text PDF

The process of spray atomization, i.e., the transformation of a continuous liquid jet into μm-sub-mm sized droplets, is ubiquitous in industry yet quite complex to analyze theoretically and study experimentally.

View Article and Find Full Text PDF

Sprays are dynamic collections of droplets dispersed in a gas, with many industrial and agricultural applications. Quantitative characterization is essential for understanding processes of spray formation and dynamics. There exists a wide range of measurement techniques to characterize sprays, from direct imaging to phase Doppler interferometry to X-rays, which provide detailed information on spray characteristics in the "far-nozzle" region (≫10 diameters of the nozzle).

View Article and Find Full Text PDF

Measurements of the vertical bubbly flow were performed at a low magnetic field of 0.2T. The void fraction data were acquired.

View Article and Find Full Text PDF

An NMR signal from a sample in a constant stray field of a portable NMR sensor is sensitized to vibrations. The CPMG sequence is synchronized to vibrations so that the constant gradient becomes an "effective" square-wave gradient, leading to the vibration-induced phase accumulation. The integrating nature of the spot measurement, combined with the phase distribution due to a non-uniform gradient and/or a wave field, leads to a destructive interference, the drop in the signal intensity and changes in the echo train shape.

View Article and Find Full Text PDF

The approach originally developed for the Nuclear Magnetic Resonance analysis of stable micro-bubbles is applied to studies of vertical bubbly flows. A very fast dispersion (diffusion) of water in bubbly flows extends the fast diffusion limit down to short (2-10 ms) measurement times, permitting the use of the simplified analytical expression to extract the micro-bubble size information both in bulk and spatially resolved. The observed strong bubble-induced reduction in T(2)(*) necessitates the use of very short encoding times and pure phase encoding methods to accurately measure the void fraction.

View Article and Find Full Text PDF

We demonstrate the combination of oscillating gradient waveforms with single-point imaging techniques to perform measurements of rapidly oscillating and/or rotating fluid motion. Measurements of Fourier components of motion can be performed over a wide range of frequencies, while the immunity of single-point imaging to time-evolution artefacts allows applications to systems with great susceptibility variations. The processing approaches, displacement resolution, and the diffusive attenuation are analyzed.

View Article and Find Full Text PDF

Unilateral magnetic resonance (UMR) has become, in different research areas, a powerful tool to interrogate samples of arbitrary size. Numerous designs have been suggested in the literature to produce the desired magnetic field distributions, including designs which feature constant magnetic field gradients suitable for diffusion and profiling experiments. This work presents a new approach which features extended constant magnetic field gradients with a three magnet array.

View Article and Find Full Text PDF
Dynamics of dissolved gas in a cavitating fluid.

Phys Rev E Stat Nonlin Soft Matter Phys

December 2008

A strong acoustic field in a liquid separates the liquid and dissolved gases by the formation of bubbles (cavitation). Bubble growth and collapse is the result of active exchange of gas and vapor through the bubble walls with the surrounding liquid. This paper details a new approach to the study of cavitation, not as an evolution of discrete bubbles, but as the dynamics of molecules constituting both the bubbles and the fluid.

View Article and Find Full Text PDF

We present the design and construction of a single sided magnet array generating a homogeneous field in a remote volume. The compact array measures 11.5 cm by 10 cm by 6 cm and weights approximately 5 kg.

View Article and Find Full Text PDF

The design and construction of a unilateral NMR (UMR) magnet assembly for near-surface 1D profiling is presented. The arrangement consists of a single permanent magnet topped with a shaped iron pole cap. The analytically determined profile of the pole cap shapes the field over the magnet, giving a constant gradient of 31 G/cm over a 8mm depth at a 1H frequency of 4.

View Article and Find Full Text PDF

Double-diffusive convection in a horizontally infinite layer of a unit height in a large-Rayleigh-number limit is considered. From linear stability analysis it is shown that the convection tends to have a form of traveling tall thin rolls with width about 30 times less than height. Amplitude equations of ABC type for vertical variations of the amplitude of these rolls and mean values of diffusive components are derived.

View Article and Find Full Text PDF

A new centric scan imaging methodology for density profiling of materials with short transverse relaxation times is presented. This method is shown to be more robust than our previously reported centric scan pure phase encode methodologies. The method is particularly well suited to density imaging of low gyro-magnetic ratio non-proton nuclei through the use of a novel dedicated one-dimensional magnetic field gradient coil.

View Article and Find Full Text PDF

Traditionally, unilateral NMR systems such as the NMR-MOUSE have used the fringe field between two bar magnets joined with a yoke in a 'U' geometry. This allows NMR signals to be acquired from a sensitive volume displaced from the magnets, permitting large samples to be investigated. The drawback of this approach is that the static field (B0) generated in this configuration is inhomogeneous, and has a large, nonlinear, gradient.

View Article and Find Full Text PDF

For samples with T1s longer than 10s, calibration of the RF probe and a measurement of T1 can be very time-consuming. A technique is proposed for use in imaging applications where one wishes to rapidly obtain information about the RF flip angle and sample T1 prior to imaging. The flip angle measurement time is less than 1s for a single scan.

View Article and Find Full Text PDF

Two strategies for the optimization of centric scan SPRITE (single point ramped imaging with T1 enhancement) magnetic resonance imaging techniques are presented. Point spread functions (PSF) for the centric scan SPRITE methodologies are numerically simulated, and the blurring manifested in a centric scan SPRITE image through PSF convolution is characterized. Optimal choices of imaging parameters and k-space sampling scheme are predicted to obtain maximum signal-to-noise ratio (SNR) while maintaining acceptable image resolution.

View Article and Find Full Text PDF

The results of a magnetic resonance imaging (MRI) investigation concerning the effects of an aluminum honeycomb sandwich panel on the B1 and B0 fields and on subsequent image quality are presented. Although the sandwich panel structure, representative of an aircraft composite material, distorts B0 and attenuates B1, distortion-free imaging is possible using single point (constant time) imaging techniques. A new expression is derived for the error caused by gradient field distortion due to the heterogeneous magnetic susceptibility within a sample and this error is shown not to cause geometric distortion in the image.

View Article and Find Full Text PDF

The purpose of this work is to develop a rapid MRI method amenable to profiling with minimal or no T(1) relaxation weighting. The behavior of a signal during a centric SPRITE acquisition is analyzed. It is shown that the technique can be made immune to a broad range of T(1) changes.

View Article and Find Full Text PDF

A magnetic resonance imaging method is presented for imaging of heterogeneous broad linewidth materials. This method allows for distortionless relaxation weighted imaging by obtaining multiple phase encoded k-space data points with each RF excitation pulse train. The use of this method, turbo spin echo single-point imaging-(turboSPI), leads to decreased imaging times compared to traditional constant-time imaging techniques, as well as the ability to introduce spin-spin relaxation contrast through the use of longer effective echo times.

View Article and Find Full Text PDF