Background: Blocking the CD47 "don't eat me"-signal on tumor cells with monoclonal antibodies or fusion proteins has shown limited clinical activity in hematologic malignancies and solid tumors thus far. Main side effects are associated with non-tumor targeted binding to CD47 particularly on blood cells.
Methods: We present here the generation and preclinical development of NILK-2401, a CEACAM5×CD47 bispecific antibody (BsAb) composed of a common heavy chain and two different light chains, one kappa and one lambda, determining specificity (so-called κλ body format).
Background: T-cell retargeting to eliminate CEACAM5-expressing cancer cells via CEACAM5xCD3 bispecific antibodies (BsAbs) showed limited clinical activity so far, mostly due to insufficient T-cell activation, dose-limiting toxicities, and formation of anti-drug antibodies (ADA).
Methods: We present here the generation and preclinical development of NILK-2301, a BsAb composed of a common heavy chain and two different light chains, one kappa and one lambda, determining specificity (so-called κλ body format).
Results: NILK-2301 binds CD3ɛ on T-cells with its lambda light chain arm with an affinity of ≈100 nM, and the CEACAM5 A2 domain on tumor cells by its kappa light chain arm with an affinity of ≈5 nM.
Nicotinamide phosphoribosyltransferase (NAMPT) plays a central role in mammalian cell metabolism by contributing to nicotinamide adenine dinucleotide biosynthesis. However, NAMPT activity is not limited to the intracellular compartment, as once secreted, the protein accomplishes diverse functions in the extracellular space. Extracellular NAMPT (eNAMPT, also called visfatin or pre-B-cell colony enhancing factor) has been shown to possess adipocytokine, pro-inflammatory, and pro-angiogenic activities.
View Article and Find Full Text PDFBackground: CD47/SIRPα axis is recognized as an innate immune checkpoint and emerging clinical data validate the interest of interrupting this pathway in cancer, particularly in hematological malignancies. In preclinical models, CD47/SIRPα blocking agents have been shown to mobilize phagocytic cells and trigger adaptive immune responses to eliminate tumors. Here, we describe the mechanisms afforded by a CD47xCD19 bispecific antibody (NI-1701) at controlling tumor growth in a mouse xenograft B-cell lymphoma model.
View Article and Find Full Text PDFCosmetic-containing herbals are a cosmetic that has or is claimed to have medicinal properties, with bioactive ingredients purported to have medical benefits. There are no legal requirements to prove that these products live up to their claims. The name is a combination of "cosmetics" and "pharmaceuticals".
View Article and Find Full Text PDFMesothelin (MSLN) is a cell surface glycoprotein overexpressed in several solid malignancies, including gastric, lung, mesothelioma, pancreatic and ovarian cancers. While several MSLN-targeting therapeutic approaches are in development, only limited efficacy has been achieved in patients. A potential shortcoming of several described antibody-based approaches is that they target the membrane distal region of MSLN and, additionally, are known to be handicapped by the high levels of circulating soluble MSLN in patients.
View Article and Find Full Text PDFCD47, an ubiquitously expressed innate immune checkpoint receptor that serves as a universal "don't eat me" signal of phagocytosis, is often upregulated by hematologic and solid cancers to evade immune surveillance. Development of CD47-targeted modalities is hindered by the ubiquitous expression of the target, often leading to rapid drug elimination and hemotoxicity including anemia. To overcome such liabilities, we have developed a fully human bispecific antibody, NI-1701, designed to coengage CD47 and CD19 selectively on B cells.
View Article and Find Full Text PDFCD47 serves as an anti-phagocytic receptor that is upregulated by cancer to promote immune escape. As such, CD47 is the focus of intense immuno-oncology drug development efforts. However, as CD47 is expressed ubiquitously, clinical development of conventional drugs, e.
View Article and Find Full Text PDFCD47 is a ubiquitously expressed immune checkpoint receptor that is often upregulated in cancer. CD47 interacts with its counter-receptor SIRPα on macrophages and other myeloid cells to inhibit cancer cell phagocytosis and drive immune evasion. To overcome tolerability and "antigen sink" issues arising from widespread CD47 expression, we generated dual-targeting bispecific antibodies that selectively block the CD47-SIRPα interaction on malignant cells expressing a specific tumor-associated antigen; e.
View Article and Find Full Text PDFBispecific antibodies enable unique therapeutic approaches but it remains a challenge to produce them at the industrial scale, and the modifications introduced to achieve bispecificity often have an impact on stability and risk of immunogenicity. Here we describe a fully human bispecific IgG devoid of any modification, which can be produced at the industrial scale, using a platform process. This format, referred to as a κλ-body, is assembled by co-expressing one heavy chain and two different light chains, one κ and one λ.
View Article and Find Full Text PDFIncreasing evidence suggests that neutrophils may participate in the regulation of adaptive immune responses, and can reach draining lymph nodes and cross-prime naive T cells. The aim of this study was to identify the mechanism(s) involved in the migration of neutrophils to the draining lymph nodes. We demonstrate that a subpopulation of human and mouse neutrophils express CCR7.
View Article and Find Full Text PDFThe transcription factors RFX and CIITA are major players in regulation of the expression of all classical and nonclassical major histocompatibility complex class II (MHC-II) genes. RFX nucleates the formation of a multiprotein complex, called the MHC-II enhanceosome, on MHC-II promoters. Assembly of this enhanceosome is an obligatory step for recruitment of the coactivator CIITA and thus for activation of MHC-II gene transcription.
View Article and Find Full Text PDFMHC class II (MHC-II) genes are regulated by an enhanceosome complex containing two gene-specific transcription factors, regulatory factor X complex (RFX) and CIITA. These factors assemble on a strictly conserved regulatory module (S-X-X2-Y) found immediately upstream of the promoters of all classical and nonclassical MHC-II genes as well as the invariant chain (Ii) gene. To identify new targets of RFX and CIITA, we developed a computational approach based on the unique and highly constrained architecture of the composite S-Y motif.
View Article and Find Full Text PDFTightly regulated expression of major histocompatibility complex (MHC) class II genes is critical for the immune system. A conserved regulatory module consisting of four cis-acting elements, the W, X, X2 and Y boxes, controls transcription of MHC class II genes. The X, X2, and Y boxes are bound, respectively, by RFX, CREB, and NF-Y to form a MHC class II-specific enhanceosome complex.
View Article and Find Full Text PDFWe analysed the regulation of human leucocyte antigen (HLA)-E, -F and -G genes, focusing on the SXY module, a promoter region that controls major histocompatibility complex (MHC) class II expression and participates in the expression of classical HLA class I molecules. It comprises the X1, X2 and Y boxes, bound by RFX, X2-BP/ATF/CREB and NFY factors, respectively. The complex recruits the master control factor CIITA.
View Article and Find Full Text PDFIn vivo, a wild-type pattern of major histocompatibility complex (MHC) class II expression requires a locus control region (LCR). Whereas the role of promoter-proximal MHC class II regulatory sequences is well established, the function of the distal LCR remained obscure. We show here that this LCR is bound by the MHC class II-specific transactivators regulatory factor X (RFX) and class II transactivator (CIITA).
View Article and Find Full Text PDFTranscription of the major histocompatibility complex class II family of genes is regulated by conserved promoter elements and two gene-specific trans-activators, RFX and CIITA. RFX binds DNA and nucleates the assembly of an enhanceosome, which recruits CIITA through protein--protein interactions. Transcriptional activation is a complex, multi-step process involving chromatin modification and recruitment of the transcription apparatus.
View Article and Find Full Text PDFCell surface expression of major histocompatibility complex class II (MHCII) molecules is increased during the maturation of dendritic cells (DCs). This enhances their ability to present antigen and activate naive CD4(+) T cells. In contrast to increased cell surface MHCII expression, de novo biosynthesis of MHCII mRNA is turned off during DC maturation.
View Article and Find Full Text PDFMajor Histocompatibility Complex class II (MHC-II) molecules play a pivotal role in the adaptive immune system because they direct the development, activation and homeostasis of CD4+ T helper cells. Hereditary defects leading to the absence of MHC-II expression result in a severe autosomal recessive immunodeficiency disease called the Bare Lymphocyte Syndrome (BLS), also referred to as MHC-II deficiency. The genetic lesions responsible for BLS do not lie within the MHC-II locus itself, but reside instead in genes encoding transcription factors controlling MHC-II expression.
View Article and Find Full Text PDFMajor histocompatibility complex class II (MHCII) molecules drive the development, activation and homeostasis of CD4* T-helper cells. They play a central role in key processes of the adaptive immune system, such as the generation of T-cell-mediated immune responses, the regulation of antibody production and the development and maintenance of tol erance. It is thus not surprising that the absence of MHCII expression results in a severe primary immunodeficiency disease (the bare lymphocyte syndrome (BLS)).
View Article and Find Full Text PDFThe major histocompatibility complex (MHC) class II transactivator CIITA plays a pivotal role in the control of the cellular immune response through the quantitative regulation of MHC class II expression. We have analyzed a region of CIITA with similarity to leucine-rich repeats (LRRs). CIITA LRR alanine mutations abolish both the transactivation capacity of full-length CIITA and the dominant-negative phenotype of CIITA mutants with N-terminal deletions.
View Article and Find Full Text PDFBy virtue of its control over major histocompatibility complex class II (MHC-II) gene expression, CIITA represents a key molecule in the regulation of adaptive immune responses. It was first identified as a factor that is defective in MHC-II deficiency, a hereditary disease characterized by the absence of MHC-II expression. CIITA is a highly regulated transactivator that governs all spatial, temporal, and quantitative aspects of MHC-II expression.
View Article and Find Full Text PDF