Gold nanorods with small dimensions demonstrate better cellular uptake and absorption efficiency. The ability to synthesize gold nanorods while maintaining a tunable high aspect ratio is challenging as it requires careful control of reaction conditions, often employing additional steps such as pH modification or the use of polymeric additives. We demonstrate a seedless approach for the synthesis of mini (width < 10 nm) gold nanorods with tunable longitudinal surface plasmon resonance from ∼700 nm to >1000 nm and aspect ratios ranging from ∼3 to ∼7 without the use of any polymeric additives or pH modification.
View Article and Find Full Text PDFTraumatic injuries, neurodegenerative diseases and oxidative stress serve as the early biomarkers for neuronal damage and impede angiogenesis and subsequently neuronal growth. Considering this, the present work aimed to develop a poly(-acryloylglycine)--(acrylamide)--(-acryloylglutamate) hydrogel [p(NAG-Ac-NAE)] with angiogenesis/neurogenesis properties. As constituents of this polymer modulate their vital role in biological functions, inhibitory neurotransmitter glycine regulates neuronal homeostasis, and glutamatergic signalling regulates angiogenesis.
View Article and Find Full Text PDFIn this era of advanced technology and innovation, infectious diseases still cause significant morbidity and mortality, which need to be addressed. Despite overwhelming success in the development of vaccines, transmittable diseases such as tuberculosis and AIDS remain unprotected, and the treatment is challenging due to frequent mutations of the pathogens. Formulations of new or existing drugs with polymeric materials have been explored as a promising new approach.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
October 2023
The facile synthesis of chiral materials is of paramount importance for various applications. Supramolecular preorganization of monomers for thermal polymerization has been proven as an effective tool to synthesize carbon and carbon nitride-based (CN) materials with ordered morphology and controlled properties. However, the transfer of an intrinsic chemical property, such as chirality from supramolecular assemblies to the final material after thermal condensation, was not shown.
View Article and Find Full Text PDFMicro- and nano-particles are elemental for many current and developing technologies. Specifically, these particles are being used extensively in biological studies and applications, which include imaging, drug delivery and therapeutics. Recent advances have led to the development of multifunctional particles, which have the potential to further enhance their effectiveness, enabling novel applications.
View Article and Find Full Text PDFPossible routes for intra-cluster bond formation (ICBF) in protonated serine dimers have been studied. We found no evidence of ICBF following low energy collision-induced dissociation (in correspondence with previous works), however, we do observe clear evidence for ICBF following photon absorption in the 4.6-14 eV range.
View Article and Find Full Text PDFChiral polymeric particles (CPPs) were studied extensively in recent years due to their importance in pharmaceutical applications. Here, nanosized CPPs were synthesized and applied as catalysts for direct asymmetric aldol reaction. The CPPs were prepared by miniemulsion or inverse miniemulsion based on various chiral amino acid derivatives and characterized by dynamic light scattering and scanning electron microscopy.
View Article and Find Full Text PDFChiral surfaces, developed in the last decade, serve as media for enantioselective chemical reactions. Until today, they have been based mostly on developments in silica templating, and are made mainly from imprints of silicate materials developed a long time ago. Here, a chiral porous activated carbon surface was developed based on a chiral ionic liquid, and the surface chemistry and pore structure were studied to lay a new course of action in the field.
View Article and Find Full Text PDFChem Commun (Camb)
December 2021
In this communication, we present a novel method to measure local optical dichroism (OD) in opaque crystal powder suspensions using photoacoustic (PA) effect. Our method is based upon the novel laser speckle contrast technique, in combination with a simple statistical approach, we were able to measure the OD of chiral crystals suspensions under completely random orientation.
View Article and Find Full Text PDFThis work investigates, for the first time, the application of sonochemically prepared bovine serum albumin (BSA) microspheres (BSAMS) as adsorbents of industrial organic pollutant dyes, such as rhodamine B (RhB), rhodamine 6G (Rh6G), and methylene blue (MB). These dyes also serve as model compounds for other organic pollutants such as bisphenol A and 2-nitrophenol. Adsorption kinetics of the dyes by the BSAMS was studied using pseudo-first-order (PFO) and pseudo-second-order (PSO) kinetic models.
View Article and Find Full Text PDFChiral separation and asymmetric synthesis and catalysis are crucial processes for obtaining enantiopure compounds, which are especially important in the pharmaceutical industry. The efficiency of the separation processes is readily increased by using porous materials as the active material can interact with a larger surface area. Silica, metal-organic frameworks, or chiral polymers are versatile porous materials that are established in chiral applications, but their instability under certain conditions in some cases requires the use of more stable porous materials such as carbons.
View Article and Find Full Text PDFNanomaterials (Basel)
January 2021
A detailed investigation is presented for the solvent-free mechanochemical synthesis of zinc oxide nanoparticles from ε-Zn(OH) crystals by high-energy ball milling. Only a few works have ever explored the dry synthetic route from ε-Zn(OH) to ZnO. The milling process of ε-Zn(OH) was done in ambient conditions with a 1:100 powder/ball mass ratio, and it produced uniform ZnO nanoparticles with sizes of 10-30 nm, based on the milling duration.
View Article and Find Full Text PDFProtein bonds between amino acids are one of the most important biological linkages that create life. The detection of amino acids in the interstellar environments and in meteorites may lead to the suggestion that amino acids came from outer space and that peptides bonds may have been created in the gas phase. Here we show experimentally the creation of covalent bonds, most likely peptide bonds, between serine dipeptides in the gas phase.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
November 2020
Many inorganic materials can form crystals, but little is known about their enantioselective crystallization. Herein, we report on the enantioselective crystallization of ϵ-Zn(OH) (Wulfingite) chiral crystals by using amino acids. Crystals of ϵ-Zn(OH) were crystallized from supersaturated sodium hydroxide and zinc nitrate aqueous solutions in the presence of l- or d-arginine.
View Article and Find Full Text PDFThe synthesis of chiral nanoporous carbons based on chiral ionic liquids (CILs) of amino acids as precursors is described. Such unique precursors for the carbonization of CILs yield chiral carbonaceous materials with high surface area (≈620 m g). The enantioselectivities of the porous carbons are examined by advanced techniques such as selective adsorption of enantiomers using cyclic voltammetry, isothermal titration calorimetry, and mass spectrometry.
View Article and Find Full Text PDFOne of the many challenges in the study of chiral nanosurfaces and nanofilms is the design of accurate and controlled nanoscale films with enantioselective activity. Controlled design of chiral nanofilms creates the opportunity to develop chiral materials with nanostructured architecture. Molecular layer deposition (MLD) is an advanced surface-engineering strategy for the preparation of hybrid inorganic-organic thin films, with a desired embedded property; in our study this is chirality.
View Article and Find Full Text PDFThe Israeli quarry industry produces 57 Mt of raw material and ∼4-6Mt of associated sub-economical by-products annually. These sub-economical quarry fines are not used because production and transportation costs considerably exceed their retail value. Therefore these by-products, are stored in large piles of fine grain size particles, create environmental risks to their surrondings.
View Article and Find Full Text PDFThe pharmaceutical industry is in need of new techniques to identify the chirality of solids due to regulatory and safety concerns regarding the biological activity of enantiomers. In this study, we present for the first time the application of low-frequency Raman spectroscopy as a new and sensitive method for analyzing the chiral purity of crystals. Using this method, we were able to identify small amounts, as low as 1 % w/w, of an enantiomer in racemic crystals.
View Article and Find Full Text PDFThe fabrication, by an all electrochemical process, of porous Si/ZnO nanostructures with engineered structural defects, leading to strong and broadband deep level emission from ZnO, is presented. Such nanostructures are fabricated by a combination of metal-assisted chemical etching of Si and direct current electrodeposition of ZnO. It makes the whole fabrication process low-cost, compatible with Complementary Metal-Oxide Semiconductor technology, scalable and easily industrialised.
View Article and Find Full Text PDFOne of the most powerful techniques that are currently available to measure thermodynamic parameters such as enthalpy (ΔH), Gibbs free energy (ΔG), entropy changes (ΔS), and binding affinity in chemical reactions is isothermal titration calorimetry (ITC). Recent advances in instrumentation have facilitated the development of ITC as a very essential analytical tool in biology and chemistry. In this article, we will focus on a review of the literature on the application of ITC for the study of chiral systems and chiral interactions.
View Article and Find Full Text PDFSelf-assembly is an important auto-organization process used in designing structural biomaterials which have the potential capability to heal tissues after traumatic injury. Although various materials having the ability to heal after injury are available, there is still a substantial need to develop new improved materials. To address this issue, we have developed hierarchical three-dimensional (3D) self-assembled zinc phosphate (Zn(PO)) in the presence of cowpea mosaic virus (CPMV).
View Article and Find Full Text PDFWe present a new method for differentiating racemic crystals from enantiopure crystals. Recently, developments in optical filters have enabled the facile use of Raman spectroscopy to detect low-frequency vibrational (LFV) modes. Here, for the first time, we use Raman spectroscopy to characterize the LFV modes for crystalline organic materials composed of chiral molecules.
View Article and Find Full Text PDFPolymeric hollow nanocapsules have attracted significant research attention as novel drug carriers and their preparation is of particular concern owing to the feasibility to encapsulate a broad range of drug molecules. This work presents for the first time the synthesis and development of novel poly-N-acryloyl l-phenylalanine methyl ester hollow core nanocapsules (NAPA-HPNs) of avg. size ca.
View Article and Find Full Text PDFIn this article, we describe an advance approach for the fabrication of chiral metal-oxide nanofilms. Our approach is based on the atomic layer deposition of titania and alumina nanofilms onto cellulose microfibers, used as chiral templates, leading to the formation of chiral nanofilms with a spatial fibrous structure. The chiral nanofilms were extensively characterized by X-ray photoelectron spectroscopy and high-resolution electron microscopy.
View Article and Find Full Text PDFBoth enantiomers of trans-cyclohexane-1,2-diammonium sulfate and trans-1,2-diphenylethylenediammonium sulfate were used as "tailor-made" additives to direct the mirror-symmetry breaking in the attrition-enhanced deracemization (i.e. Viedma ripening) of conglomerate crystals of ethylenediammonium sulfate (EDS).
View Article and Find Full Text PDF