Publications by authors named "Massy B"

In many eukaryotes, meiotic recombination occurs preferentially at discrete sites, called recombination hotspots. In various lineages, recombination hotspots are located in regions with promoter-like features and are evolutionarily stable. Conversely, in some mammals, hotspots are driven by PRDM9 that targets recombination away from promoters.

View Article and Find Full Text PDF

During meiosis, nucleoprotein filaments of the strand exchange proteins RAD51 and DMC1 are crucial for repairing SPO11-generated DNA double-strand breaks (DSBs) by homologous recombination (HR). A balanced activity of positive and negative RAD51/DMC1 regulators ensures proper recombination. Fidgetin-like 1 (FIGNL1) was previously shown to negatively regulate RAD51 in human cells.

View Article and Find Full Text PDF

The TOPOVIL complex catalyzes the formation of DNA double strand breaks (DSB) that initiate meiotic homologous recombination, an essential step for chromosome segregation and genetic diversity during gamete production. TOPOVIL is composed of two subunits (SPO11 and TOPOVIBL) and is evolutionarily related to the archaeal TopoVI topoisomerase complex. SPO11 is the TopoVIA subunit orthologue and carries the DSB formation catalytic activity.

View Article and Find Full Text PDF

In meiotic cells, chromosomes are organized as chromatin loop arrays anchored to a protein axis. This organization is essential to regulate meiotic recombination, from DNA double-strand break (DSB) formation to their repair. In mammals, it is unknown how chromatin loops are organized along the genome and how proteins participating in DSB formation are tethered to the chromosome axes.

View Article and Find Full Text PDF

Molecular approaches are required to detect DNA double-strand break (DSB) events and to map and quantify them at high resolution. One of the most popular molecular methods in the field of meiotic recombination is the ChIP-SSDS (Chromatin immuno-precipitation and single-strand DNA sequencing). Here, we present two fully-automated Nextflow-based pipelines to analyze the sequencing data generated by this method.

View Article and Find Full Text PDF

Multiple pathways generate mutations at sites of meiotic recombination in humans.

View Article and Find Full Text PDF
Article Synopsis
  • Meiotic recombination begins with DNA double-strand breaks (DSBs), crucial for genetic diversity and fertility, facilitated by the TOPOVIL complex in mice.
  • The study reveals that REC114 forms homodimers and interacts with MEI4 and IHO1 to create complex structures, with IHO1 forming tetramers.
  • Findings suggest REC114 may play a regulatory role, allowing it to interact with various partners in a ternary complex with IHO1 and MEI4, emphasizing the importance of these interactions in meiotic processes.
View Article and Find Full Text PDF

Meiosis requires the formation of programmed DNA double strand breaks (DSBs), essential for fertility and for generating genetic diversity. DSBs are induced by the catalytic activity of the TOPOVIL complex formed by SPO11 and TOPOVIBL. To ensure genomic integrity, DNA cleavage activity is tightly regulated, and several accessory factors (REC114, MEI4, IHO1, and MEI1) are needed for DSB formation in mice.

View Article and Find Full Text PDF

Type II DNA topoisomerases regulate topology by double-stranded DNA cleavage and ligation. The TopoVI family of DNA topoisomerase, first identified and biochemically characterized in Archaea, represents, with TopoVIII and mini-A, the type IIB family. TopoVI has several intriguing features in terms of function and evolution.

View Article and Find Full Text PDF

During meiosis, a molecular program induces DNA double-strand breaks (DSBs) and their repair by homologous recombination. DSBs can be repaired with or without crossovers. ZMM proteins promote the repair toward crossover.

View Article and Find Full Text PDF

One of the most fascinating aspects of meiosis is the extensive reorganization of the genome at the prophase of the first meiotic division (prophase I). The first steps of this reorganization are observed with the establishment of an axis structure, that connects sister chromatids, from which emanate arrays of chromatin loops. This axis structure, called the axial element, consists of various proteins, such as cohesins, HORMA-domain proteins, and axial element proteins.

View Article and Find Full Text PDF

In most taxa, halving of chromosome numbers during meiosis requires that homologous chromosomes (homologues) pair and form crossovers. Crossovers emerge from the recombination-mediated repair of programmed DNA double-strand breaks (DSBs). DSBs are generated by SPO11, whose activity requires auxiliary protein complexes, called pre-DSB recombinosomes.

View Article and Find Full Text PDF

Gene-expression programs define shared and species-specific phenotypes, but their evolution remains largely uncharacterized beyond the transcriptome layer. Here we report an analysis of the co-evolution of translatomes and transcriptomes using ribosome-profiling and matched RNA-sequencing data for three organs (brain, liver and testis) in five mammals (human, macaque, mouse, opossum and platypus) and a bird (chicken). Our within-species analyses reveal that translational regulation is widespread in the different organs, in particular across the spermatogenic cell types of the testis.

View Article and Find Full Text PDF

Meiotic recombination starts with the formation of DNA double-strand breaks (DSBs) at specific genomic locations that correspond to PRDM9-binding sites. The molecular steps occurring from PRDM9 binding to DSB formation are unknown. Using proteomic approaches to find PRDM9 partners, we identified HELLS, a member of the SNF2-like family of chromatin remodelers.

View Article and Find Full Text PDF

Three independent studies show that a protein called ZCWPW1 is able to recognize the histone modifications that initiate the recombination of genetic information during meiosis.

View Article and Find Full Text PDF

Nonsteroidal anti-inflammatory drugs (NSAIDs) and analgesic drugs, such as acetaminophen (APAP), are frequently taken during pregnancy, even in combination. However, they can favour genital malformations in newborn boys and reproductive disorders in adults. Conversely, the consequences on postnatal ovarian development and female reproductive health after in utero exposure are unknown.

View Article and Find Full Text PDF

Orderly segregation of chromosomes during meiosis requires that crossovers form between homologous chromosomes by recombination. Programmed DNA double-strand breaks (DSBs) initiate meiotic recombination. We identify ANKRD31 as a key component of complexes of DSB-promoting proteins that assemble on meiotic chromosome axes.

View Article and Find Full Text PDF

Eutherian mammals have an extremely conserved sex-determining system controlled by highly differentiated sex chromosomes. Females are XX and males XY, and any deviation generally leads to infertility, mainly due to meiosis disruption. The African pygmy mouse (Mus minutoides) presents an atypical sex determination system with three sex chromosomes: the classical X and Y chromosomes and a feminizing X chromosome variant, called X*.

View Article and Find Full Text PDF

Programmed formation of DNA double-strand breaks (DSBs) initiates the meiotic homologous recombination pathway. This pathway is essential for proper chromosome segregation at the first meiotic division and fertility. Meiotic DSBs are catalyzed by Spo11.

View Article and Find Full Text PDF

During meiosis, maternal and paternal chromosomes undergo exchanges by homologous recombination. This is essential for fertility and contributes to genome evolution. In many eukaryotes, sites of meiotic recombination, also called hotspots, are regions of accessible chromatin, but in many vertebrates, their location follows a distinct pattern and is specified by PR domain-containing protein 9 (PRDM9).

View Article and Find Full Text PDF

The programmed formation of hundreds of DNA double-strand breaks (DSBs) is essential for proper meiosis and fertility. In mice and humans, the location of these breaks is determined by the meiosis-specific protein PRDM9, through the DNA-binding specificity of its zinc-finger domain. PRDM9 also has methyltransferase activity.

View Article and Find Full Text PDF

The ways in which recombination sites are determined during meiosis are becoming clearer following a phylogenomic analysis for 225 different species.

View Article and Find Full Text PDF

During sexual reproduction haploid gametes are generated out of diploid mother cells. This ploidy reduction is accomplished during meiosis and, in most species, relies on the occurrence of homologous recombination that is triggered by the induction of a large number of DNA double strand breaks (DSBs). The mechanism by which such DSBs are generated without provoking massive DNA breakdown in gamete mother cells is still poorly understood.

View Article and Find Full Text PDF

PR domain-containing protein 9 (PRDM9) is a major regulator of the localization of meiotic recombination hotspots in the human and mouse genomes. This role involves its DNA-binding domain, which is composed of a tandem array of zinc fingers, and PRDM9-dependent trimethylation of histone H3 at lysine 4. PRDM9 is a member of the PRDM family of transcription regulators, but unlike other family members, it contains a Krüppel-associated box (KRAB)-related domain that is predicted to be a potential protein interaction domain.

View Article and Find Full Text PDF

In mouse and human meiosis, DNA double-strand breaks (DSBs) initiate homologous recombination and occur at specific sites called hotspots. The localization of these sites is determined by the sequence-specific DNA binding domain of the PRDM9 histone methyl transferase. Here, we performed an extensive analysis of PRDM9 binding in mouse spermatocytes.

View Article and Find Full Text PDF