Growth in urbanization has led to increased impervious surfaces, exacerbating flood risks and water quality degradation. This study investigated the impact of land use change and Low-Impact Development (LID) systems on urban runoff quality and quantity in the second region of Tehran. Pioneering an innovative approach, the integration of the Land Change Modeler (LCM) with the Stormwater Management Model (SWMM) signifies a paradigm shift in urban water management.
View Article and Find Full Text PDFAs concerning with water insecurity driven by water scarcity threatens the lives and livelihoods of humanity worldwide, urban water demand management is focused on promoting residential water conservation behaviors (WCBs) as a critical policy response to water scarcity. However, urban water conservation initiatives cannot be successful unless households involve in residential WCBs voluntarily by adopting water curtailment and/or water-efficiency actions. Thus, understanding motivations and mechanisms underlying accepting these two types of WCBs and interpreting their distinctions are primary policy considerations to make sustainable water consumption behaviors.
View Article and Find Full Text PDFWater security while facing a growing water demand and decreasing supply has become a vital issue in urban areas, especially in arid and semi-arid regions. Considering households' potential for significant water saving, residential water conservation has become the main component of the future sustainable water supply. To encourage households to engage in water conservation behaviors voluntarily, it is crucial to recognize and consider the socio-psychological factors influencing acceptance of such behaviors, including intention, normative aspects, and so on, because it can lead to the implementation of effective policies in urban water demand management.
View Article and Find Full Text PDFWater distribution systems are basically designed to convey pressurized flow; however, in some situations such as the intermittent operation of the system, the network may experience a transition between free-surface and pressurized flow. On the other hand, combined sewer systems, designed basically for free-surface flow, may undergo pressurization due to extreme rainfalls. During transient flow, free-surface flow changes into a pressurized flow (and vice versa) which could be accompanied by intensive transient pressures causing structural damages to the system.
View Article and Find Full Text PDFIn wastewater systems as one of the most important urban infrastructures, the adverse consequences and effects of unsuitable performance and failure event can sometimes lead to disrupt part of a city functioning. By identifying high failure risk areas, inspections can be implemented based on the system status and thus can significantly increase the sewer network performance. In this study, a new risk assessment model is developed to prioritize sewer pipes inspection using Bayesian Networks (BNs) as a probabilistic approach for computing probability of failure and weighted average method to calculate the consequences of failure values.
View Article and Find Full Text PDF