Introduction: Corticotropin-releasing factor receptor 1 (CRFR1) is a key regulator of neuroendocrine and behavioral stress responses. Previous studies have demonstrated that CRFR1 in certain hypothalamic and preoptic brain areas is modified by chronic stress and during the postpartum period in female mice, although the potential hormonal contributors to these changes are unknown.
Methods: This study focused on determining the contributions of hormones associated with stress and the maternal period (glucocorticoids, prolactin, estradiol/progesterone) on CRFR1 levels using a CRFR1-GFP reporter mouse line and immunohistochemistry.
Neuroendocrinology
July 2023
Introduction: Corticotropin-releasing factor and its primary receptor (CRFR1) are critical regulators of behavioral and neuroendocrine stress responses. CRFR1 has also been associated with stress-related behavioral changes in postpartum mice. Our previous studies indicate dynamic changes in CRFR1 levels and coupling of CRFR1 with tyrosine hydroxylase (TH) and oxytocin (OT) neurons in postpartum mice.
View Article and Find Full Text PDFAphasia, the loss of language ability following damage to the brain, is among the most disabling and common consequences of stroke. Subcortical stroke, occurring in the basal ganglia, thalamus, and/or deep white matter can result in aphasia, often characterized by word fluency, motor speech output, or sentence generation impairments. The link between greater lesion volume and acute aphasia is well documented, but the independent contributions of lesion location, cortical hypoperfusion, prior stroke, and white matter degeneration (leukoaraiosis) remain unclear, particularly in subcortical aphasia.
View Article and Find Full Text PDF