Phys Chem Chem Phys
December 2012
Reactive dynamics simulations with the reactive force field (ReaxFF) were performed in NVE ensembles to study the sintering of two solid calcium oxide (CaO) particles with and without CO(2) chemisorption. The simulated sintering conditions included starting adsorption temperatures at 1000 K and 1500 K and particle separation distances of 0.3 and 0.
View Article and Find Full Text PDFAn Integrated Vacuum Carbonate Absorption Process (IVCAP) currently under development could significantly reduce the energy consumed when capturing CO2 from the flue gases of coal-fired power plants. The biocatalyst carbonic anhydrase (CA) has been found to effectively promote the absorption of CO2 into the potassium carbonate solution that would be used in the IVCAP. Two CA enzymes were immobilized onto three selected support materials having different pore structures.
View Article and Find Full Text PDFHexane adsorption on single-walled carbon nanotube (SWNT) bundles is studied by both simulation and experimentally using a previously developed computer-aided methodology, which employed a smaller physisorbed probe molecule, nitrogen, to explore the porosity of nanotube samples. Configurational-bias grand canonical Monte Carlo simulation of hexane adsorption on localized sites of the bundles is carried out to predict adsorption on their external surface and in their internal sites. These localized isotherms are then combined into a global isotherm for a given sample by using knowledge of its tube-diameter distribution and structural parameters, such as the fraction of open-ended nanotubes and the external surface area of bundles in samples, which have been independently determined from the standard nitrogen adsorption isotherm.
View Article and Find Full Text PDFA procedure, combining molecular simulation, Raman spectroscopy, and standard nitrogen adsorption, is developed for structural characterization of single-walled carbon nanotube (SWNT) samples. Grand canonical Monte Carlo simulations of nitrogen adsorption are performed on the external and internal adsorption sites of homogeneous arrays of SWNTs of diameters previously determined by Raman spectroscopy of the sample. The results show the importance of the peripheral grooves of a nanotube bundle at low relative pressure and the insensitivity of nanotube diameter toward adsorption on the external surface of the bundle at higher pressures.
View Article and Find Full Text PDF