Forest trees adopt effective strategies to optimize nitrogen (N) use through internal N recycling. In the context of more recurrent environmental stresses due to climate change, the question remains of whether increased frequency of drought or defoliation threatens this internal N recycling strategy. We submitted 8-year-old beech trees to 2 years of either severe drought (Dro) or manual defoliation (Def) to create a state of N starvation.
View Article and Find Full Text PDFThe predicted recurrence of adverse climatic events such as droughts, which disrupt nutrient accessibility for trees, could jeopardize the nitrogen (N) metabolism in forest trees. Internal tree N cycling capacities are crucial to ensuring tree survival but how the N metabolism of forest trees responds to intense, repeated environmental stress is not well known. For 2 years, we submitted 9-year-old beech (Fagus sylvatica L.
View Article and Find Full Text PDFPhloem failure has recently been recognized as one of the mechanisms causing tree mortality under drought, though direct evidence is still lacking. We combined 13C pulse-labelling of 8-year-old beech trees (Fagus sylvatica L.) growing outdoors in a nursery with an anatomical study of the phloem tissue in their stems to examine how drought alters carbon transport and phloem transport capacity.
View Article and Find Full Text PDFDiurnal release of the orexin neuropeptides orexin-A (Ox-A, hypocretin-1) and orexin-B (Ox-B, hypocretin-2) stabilises arousal, regulates energy homeostasis and contributes to cognition and learning. However, whether cellular correlates of brain plasticity are regulated through orexins, and whether they do so in a time-of-day-dependent manner, has never been assessed. Immunohistochemically we found sparse but widespread innervation of hippocampal subfields through Ox-A- and Ox-B-containing fibres in young adult rats.
View Article and Find Full Text PDFWater stresses reduce plant growth but there is no consensus on whether carbon metabolism has any role in this reduction. Sugar starvation resulting from stomatal closure is often proposed as a cause of growth impairment under long-term or severe water deficits. However, growth decreases faster than photosynthesis in response to drought, leading to increased carbohydrate stores under short-term or moderate water deficits.
View Article and Find Full Text PDFWiley Interdiscip Rev Dev Biol
April 2014
Leaves of flowering plants are produced from the shoot apical meristem at regular intervals and they grow according to a developmental program that is determined by both genetic and environmental factors. Detailed frameworks for multiscale dynamic analyses of leaf growth have been developed in order to identify and interpret phenotypic differences caused by either genetic or environmental variations. They revealed that leaf growth dynamics are non-linearly and nonhomogeneously distributed over the lamina, in the leaf tissues and cells.
View Article and Find Full Text PDFLeaves have a central role in plant energy capture and carbon conversion and therefore must continuously adapt their development to prevailing environmental conditions. To reveal the dynamic systems behaviour of leaf development, we profiled Arabidopsis leaf number six in depth at four different growth stages, at both the end-of-day and end-of-night, in plants growing in two controlled experimental conditions: short-day conditions with optimal soil water content and constant reduced soil water conditions. We found that the lower soil water potential led to reduced, but prolonged, growth and an adaptation at the molecular level without a drought stress response.
View Article and Find Full Text PDFLight and soil water content affect leaf surface area expansion through modifications in epidermal cell numbers and area, while effects on leaf thickness and mesophyll cell volumes are far less documented. Here, three-dimensional imaging was applied in a study of Arabidopsis thaliana leaf growth to determine leaf thickness and the cellular organization of mesophyll tissues under moderate soil water deficit and two cumulative light conditions. In contrast to surface area, thickness was highly conserved in response to water deficit under both low and high cumulative light regimes.
View Article and Find Full Text PDFEnormous progress has been achieved understanding the molecular mechanisms regulating endoreduplication. By contrast, how this process is coordinated with the cell cycle or cell expansion and contributes to overall growth in multicellular systems remains unclear. A holistic approach was used here to give insight into the functional links between endoreduplication, cell division, cell expansion, and whole growth in the Arabidopsis (Arabidopsis thaliana) leaf.
View Article and Find Full Text PDFBackground: Renewed interest in plant×environment interactions has risen in the post-genomic era. In this context, high-throughput phenotyping platforms have been developed to create reproducible environmental scenarios in which the phenotypic responses of multiple genotypes can be analysed in a reproducible way. These platforms benefit hugely from the development of suitable databases for storage, sharing and analysis of the large amount of data collected.
View Article and Find Full Text PDFThe study of leaf expansion began decades ago and has covered the comparison of a wide range of species, genotypes of a same species and environmental conditions or treatments. This has given rise to a large number of potential protocols for today's leaf development biologists. The final size of the leaf surface of a plant results from the integration of many different processes (which may be quantified by various developmental variables) at different organizational levels, such as, the duration and the rate of leaf production by the plant, the duration and the rate of individual leaf expansion, and also cell production and expansion in the leaf.
View Article and Find Full Text PDFBackground: Despite the wide spread application of confocal and multiphoton laser scanning microscopy in plant biology, leaf phenotype assessment still relies on two-dimensional imaging with a limited appreciation of the cells' structural context and an inherent inaccuracy of cell measurements. Here, a successful procedure for the three-dimensional imaging and analysis of plant leaves is presented.
Results: The procedure was developed based on a range of developmental stages, from leaf initiation to senescence, of soil-grown Arabidopsis thaliana (L.
Both the spatial distribution of leaves and leaf functions affect the light interception, transpiration and photosynthetic capacities of trees, but their relative contributions have rarely been investigated. We assessed these contributions at the branch and tree scales in two apple cultivars (Malus x domestica Borkh. 'Fuji' and 'Braeburn') with contrasting architectures, by estimating their branch and tree capacities and comparing them with outputs from a radiation absorption, transpiration and photosynthesis (RATP) functional-structural plant model (FSPM).
View Article and Find Full Text PDFBackground And Aims: Leaf responses to environmental conditions have been frequently described in fruit trees, but differences among cultivars have received little attention. This study shows that parameters of Farquhar's photosynthesis and Jarvis' stomatal conductance models differed between two apple cultivars, and examines the consequences of these differences for leaf water use efficiency.
Methods: Leaf stomatal conductance (g(sw)), net CO2 assimilation rate (A(n)), respiration (R(d)) and transpiration (E) were measured during summer in 8-year-old 'Braeburn' and 'Fuji' apple trees under well-watered field conditions.
In crop species, the impact of temperature on plant development is classically modelled using thermal time. We examined whether this method could be used in a non-crop species, Arabidopsis thaliana, to analyse the response to temperature of leaf initiation rate and of the development of two leaves of the rosette. The results confirmed the large plant-to-plant variability in the studied isogenic line of the Columbia ecotype: 100-fold differences in leaf area among plants sown on the same date were commonly observed at a given date.
View Article and Find Full Text PDF