Wearable technologies are becoming pervasive in our society, and their development continues to accelerate the untapped potential of continuous and ubiquitous sensing, coupled with big data analysis and interpretation, has only just begun to unfold. However, existing wearable devices are still bulky (mainly due to batteries and electronics) and have suboptimal skin contact. In this work, we propose a novel approach based on a sensor network produced through inkjet printing of nanofunctional inks onto a semipermeable substrate.
View Article and Find Full Text PDFThe escalating global incidence of infectious diseases caused by pathogenic bacteria, especially in developing countries, emphasises the urgent need for rapid and portable pathogen detection devices. This study introduces a sensitive and specific electrochemical biosensing platform utilising cost-effective electrodes fabricated by inkjet-printing gold and silver nanoparticles on a plastic substrate. The biosensor exploits the CRISPR/Cas12a system for detecting a specific DNA sequence selected from the genome of the target pathogen.
View Article and Find Full Text PDFFollowing the global COVID-19 pandemic triggered by SARS-CoV-2, the need for rapid, specific and cost-effective point-of-care diagnostic solutions remains paramount. Even though COVID-19 is no longer a public health emergency, the disease still poses a global threat leading to deaths, and it continues to change with the risk of new variants emerging causing a new surge in cases and deaths. Here, we address the urgent need for rapid, cost-effective and point-of-care diagnostic solutions for SARS-CoV-2.
View Article and Find Full Text PDFColloidal metal nanoparticles dispersions are commonly used to create functional printed electronic devices and they typically require time-, energy- and equipment-consuming post-treatments to improve their electrical and mechanical properties. Traditional methods, e.g.
View Article and Find Full Text PDFSimplicity is one of the key feature for the spread of any successful technological product. Here, a method for rapid and low-cost fabrication of electrochemical biosensors is presented. This "plug, print & play" method involves inkjet-printing even in an office-like environment, without the need of highly specialized expertise or equipment, guaranteeing an ultra-fast idea to (scaled) prototype production time.
View Article and Find Full Text PDFThe combination of different components such as carbon nanostructures and organic gelators into composite nanostructured hydrogels is attracting wide interest for a variety of applications, including sensing and biomaterials. In particular, both supramolecular hydrogels that are formed from unprotected D,L-tripeptides bearing the Phe-Phe motif and nitrogen-doped carbon nanodots (NCNDs) are promising materials for biological use. In this work, they were combined to obtain luminescent, supramolecular hydrogels at physiological conditions.
View Article and Find Full Text PDF